• Title/Summary/Keyword: FAK

Search Result 58, Processing Time 0.025 seconds

Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells

  • Sung, So Jung;Kim, Hyun-Kyung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.

Hyaluronic acid and proteoglycan link protein 1 suppresses platelet-derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells

  • Dan Zhou;Hae Chan Ha;Goowon Yang;Ji Min Jang;Bo Kyung Park;Bo Kyung Park;In Chul Shin;Dae Kyong Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.445-450
    • /
    • 2023
  • The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases.

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

High Expression of HIF-1α, BNIP3 and PI3KC3: Hypoxia-Induced Autophagy Predicts Cholangiocarcinoma Survival and Metastasis

  • Thongchot, Suyanee;Yongvanit, Puangrat;Loilome, Watcharin;Seubwai, Wanchana;Phunicom, Kutcharin;Tassaneeyakul, Wichittra;Pairojkul, Chawalit;Promkotra, Wisuttiphong;Techasen, Anchalee;Namwat, Nisana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5873-5878
    • /
    • 2014
  • Hypoxia and autophagy are known to facilitate tumor progression. We here aimed to investigate the role of hypoxia-associated autophagy in cholangiocarcinoma (CCA) survival and metastasis. Immunostaining of hypoxic-responsive proteins (HIF-$1{\alpha}$ and BNIP3) and a key regulator of autophagy (PI3KC3) were examined in CCA tissues and their expression levels were compared with clinicopathological parameters. A hypoxia mimicking condition ($CoCl_2$ treatment) was also tested regarding CCA cell functions. Our results showed that HIF-$1{\alpha}$ (66%), BNIP3 (44%) and PI3KC3 (46%) showed strong staining in human CCA tissues. Positive expression of HIF-$1{\alpha}$ (p=0.033), BNIP3 (p=0.040) and PI3KC3 (p=0.037) was significantly correlated with lymph node metastasis. HIF-$1{\alpha}$ was well associated with BNIP3 (r=0.3, p<0.01) and PI3KC3 (r=0.2, p<0.01). The survival rates of patients who were positive with HIF-$1{\alpha}$ (p=0.047) or co-expressed HIF-$1{\alpha}$ and BNIP3 (p=0.032) or HIF-$1{\alpha}$ and PI3KC3 (p=0.043) were significantly greater than in the negative groups. CCA cells treated with $CoCl_2$ showed an increase in HIF-$1{\alpha}$, BNIP3, PI3KC3 and LC3-II, with increased cell migration and pFAK levels. These data suggest that hypoxia associated autophagy enhances CCA metastasis, resulting in a poor prognosis of CCA.

The biological effects of fibronectin typeIII 7-10 to MC3T3-E1 osteoblast (Fibronectin type III 7-10 이 조골세포에 미치는 영향)

  • Hong, Jeong-Ug;Choi, Sang-Mook;Han, Soo-Boo;Chung, Chong-Pyoung;Rhyu, In-Chul;Lee, Yong-Moo;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.143-160
    • /
    • 2002
  • 타이태늄은 뛰어난 생체적합성과 적절한 물리적 성질을 바탕으로 치과 및 정형외과 영역의 매식재로 널리사용되어져 왔으며, 골과 매식재 사이의 골 융합 정도를 증가시킬 목적으로 물리, 화학적인 방법을 이용한 타이태늄의 표면처리에 관한 많은 연구들이 진행되어 왔다. 최근에는 부착단백질 또는 성장인자를 이용한 생체재료의 표면개질을 통하여 조직적합성 및 치유 능의 개선을 위한 시도들이 있어왔다. Fibronectin(FN)은 주요 세포외기질중의 하나로 생체 내 널리 분포하여 세포의 부착, 이동 및 증식에 관여하는 거대 당단백으로, RGD및 PHSRN 펩타이드 서열이 세포의 인테그린과 결합하여 세포의 활성을 조절하는 것으로 알려져 있다. 이 연구에서는 FN으로 처리된 타이태늄이 조골세포의 부착, 증식 및 분화에 미치는 영향과 이에 따른 석회화 정도에 미치는 영향을 관찰하여 부착분자를 이용한 타이태늄 표면개질의 효과를 규명하고자 하였다. 상업용 순수 타이태늄을 gold thiol법을 이용하여 표면처리 후, 혈장 FN(plasma FN, pFN)과 유전자재조합법을 이용하여 얻은 FN조각(FN type III 7-10, FNIII 7-10)을 피복한 시편을 실험군으로, 아무런 처리를 하지 않은것(smooth surface, SS)과 산 부식(Sandblasted and acid etched, SLA)처리된것을 대조군으로 이용하였다. 배양된 조골세포주(MC3T3-E1)를 사용하여 타이태늄 표면 처리에 따른 세포의 증식, 형태변화, 알칼리성 인산분해효소(ALPase) 생산 및 세포면역형광법을 이용한 분화정도를 시간 경과에 따라 관찰하였다. 조골세포증식의 경우 FNIII 7-10 처리군에서 pFN 처리군 및 대조군에 비해 시간경과에 따라 유의성있는 세포수의 증식이 관찰되었으며(p<0.05), ALPase 생성의 경우에도 FNIII 7-10 처리 군에서 아무 처리도 하지 않은 군에 비해 유의성 있게 높은 효소의 생성이 관찰되었다(p<0.05). 주사전자현미경을 이용한 세포의 형태관찰결과 아무 처리도 하지 않은 군에서는 마름모형태를 나타내었으며, 산 부식 처리된 군에서는 세포가 가시모양의 형태를 보인 반면 FN으로 처리된 두 군에서는 세포의 부착 및 펴짐이 매우 발달되어 있는 모습이 관찰되었다. 세포의 분화정도를 관찰하기 위하여 국소부착키나제(focal adhesion kinase, FAK), 및 actin stress fiber의 분포양상을 세포면역형광법을 이용하여 관찰한 결과 FN으로 표면처리된 두 군에서 아무런 처리도 하지않은 군 및 산 부식처리 한 군에 비해 프라크의 발현이 높게 나타났으며 잘 발달된 actin stress fiber의 소견을 나타내었다. 이 실험의 결과들은 gold thiol 법을 이용한 표면처리 후 FN부착을 통한 타이태늄의 표면개질이 조골세포의 부착, 증식 및 분화에 중요한 역할을 담당하여 석회화 정도를 촉진시키는 것을 보여주었으며, 이런 결과들은 더 짧은 FN조각을 이용한 다른 생체재료의 표면개질에 폭 넓게 응용할 수 있으리라 생각된다.

Ginsenoside Rg3 Induces Apoptosis in B16F10 Melanoma Cells (ginsenoside Rg3에 의한 B16F10 흑색종 세포의 세포사멸 유도)

  • Lee, Seul Gi;Kim, Byung Soo;Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.1001-1005
    • /
    • 2014
  • Ginsenoside Rg3 is one of the active ingredients extracted from red ginseng, and it is an effective chemical component of the human body and well known in herbal medicine as a restorative agent. Several studies have shown that Rg3 has a potent anti-tumor effect on various cancer cell lines. However, Rg3-induced apoptosis in B16F10 melanoma cancer cells is not well understood. In the present study, we tested whether ginsenoside Rg3 could induce apoptosis in B16F10 melanoma cells. We found that Rg3 could inhibit B16F10 melanoma cell viability in a dose-dependent manner, but not normal cells, such as EA.hy.926 and NIH3T3 cells. We also found that Rg3 could induce apoptosis in B16F10 melanoma cells using tunnel-staining assay in a dose-dependent manner. Rg3 treatment induces the phosphorylation of p38 and the expression of Bax, but it inhibits the expressions of the phosphorylation of focal adhesion kinase Bcl2 and pro-caspase3. Taken together, our data suggest that Rg3 could be useful as an anti-cancer agent in B16F10 melanoma cells.

Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity

  • Lee, Kyoung-Jin;Lim, Dongyoung;Yoo, Yeon Ho;Park, Eun-Ji;Lee, Sun-Hee;Yadav, Birendra Kumar;Lee, Yong-Ki;Park, Jeong Hyun;Kim, Daejoong;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.557-565
    • /
    • 2016
  • The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory $PILR{\alpha}$ and activating $PILR{\beta}$ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit ${\beta}1$ integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of ${\beta}1$ integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of ${\beta}1$ integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.

Screening of key miRNAs related with the differentiation of subcutaneous adipocytes and the validation of miR-133a-3p functional significance in goats

  • Xin, Li;Hao, Zhang;Yong, Wang;Yanyan, Li;Youli, Wang;Jiangjiang, Zhu;Yaqiu, Lin
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.144-155
    • /
    • 2023
  • Objective: Adipocyte differentiation is regulated by a variety of functional genes and noncoding RNAs. However, the role of miRNAs in lipid deposition of goat white adipose tissue is still unclear. Therefore, this study revealed the miRNA expression profile in goat subcutaneous adipocytes by sRNA-seq. Methods: The miRNA expressed in goat subcutaneous preadipocytes and the mature adipocytes were sequenced by sRNA-seq. The differentially expressed miRNAs (DEm) were screened and gene ontology (GO) and Kyoto encyclopedia for genes and genomes (KEGG) analyses were performed. Gain-of-function and loss-of-function combined with oil red O staining, Bodipy staining, and quantitative reverse-transcription polymerase chain reaction (qPCR) were utilized to determine the effect of miR-133a-3p on adipocyte differentiation. Results: A total of 218 DEm were screened out. The target genes of these DEm were significantly enriched in GO items such as biological regulation and in KEGG terms such as FAK signaling pathway and MAPK signaling pathway. qPCR verified that the expression trend of miRNA was consistent with miRNA-seq. The gain-of-function or loss-of-function of miR-133a-3p showed that it promoted or inhibited the accumulation of lipid droplets, and CCAAT enhancer binding protein α (C/EBPα) and C/EBPβ were extremely significantly up-regulated or down-regulated respectively (p<0.01), the loss-of-function also led to a significant down-regulation of peroxisome proliferator activated receptor gamma (PPARγ) (p<0.01). Conclusion: This study successfully identified miRNAs expression patterns in goat subcutaneous adipocytes, and functional identification indicates that miR-133a-3p is a positive regulator of the differentiation process of goat subcutaneous adipocytes. Our results lay the foundation for the molecular mechanism of lipid deposition in meat-source goats from the perspective of miRNA.