• Title/Summary/Keyword: FACs Analysis

Search Result 198, Processing Time 0.022 seconds

Analysis of 5-aza-2'-deoxycytidine-induced Gene Expression in Lung Cancer Cell Lines (폐암 세포주에서 5-aza-2'-deoxycytidine 처치에 의해 발현되는 암항원 유전자 분석)

  • 김창수;이해영;김종인;장희경;박종욱;조성래
    • Journal of Chest Surgery
    • /
    • v.37 no.12
    • /
    • pp.967-977
    • /
    • 2004
  • Background: DNA methylation is one of the important gene expression mechanisms of the cell. When cytosine of CpG dinucleotide in promotor is hypomethylated, expression of some genes that is controlled by this promoter is altered. In this study, the author investigated the effect of DNA demethylating agent, 5-aza-2'-deoxycytidine (ADC), on the expressions of cancer antigen genes, MHC and B7 in 4 lung cancer cell lines, NCIH1703, NCIH522, MRC-5, and A549. Material and Method: After treatment of cell lines, NCIH1703, NCIH522, MRC-5 and A549 with ADC (1 uM) for 48 hours, RT-PCR was performed by using the primers of MAGE, GAGE, NY-ESO-1, PSMA, CEA, and SCC antigen gene. In order to find the optimal ADC treatment condition for induction of cancer antigen, we studied the effect of ADC treatment time and dose on the cancer antigen gene expression. To know the effect of ADC on the expression of MHC or B7 and cell growth, cells were treated with 1 uM of ADC for 72 hours for FACS analysis or cells were treated with 0.2, 1 or 5 uM of ADC for 96 hours for cell counting. Result: After treatment of ADC (1 uM) for 48 hours, the expressions of MAGE, GAGE, NY-ESO-1, and PSMA genes increased in some cell lines. Among 6 MAGE isotypes tested, and gene expression of MAGE-1, -2, -3, -4 and -6 could be induced by ADC treatment. However, CEA gene expression did not change and SCC gene expression was decreased by ADC treatment. Gene expression was generally induced 24 - 28 hours after ADC treatment and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC ADC teatment, and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC teatment in ADC-Free medium. Most gene expression could be induced at 0.2 uM of ADC, but gene expression increased dependently on ADC treatment dose. The expression of MHC and B7 was not increased by ADC treatment in all four cell lines, and the growth rate of 4 cell lines decreased significantly with the increase of ADC concentrations. Conclusion: Treatment of lung cancer cell lines with ADC increases the gene expression MAGE, GAGE and NY-ESO-1 that are capable of induction of cytotoxic T lymphocyte response. We suggest that treatment with 1 uM of ADC for 48 hours and then culturing in ADC-free medium is optimal condition for induction of cancer antigen. However, ADC has no effect on MHC and B7 induction, additional modification for increase of expression of MHC, B7 and cytokine will be needed for production of efficient cancer cell vaccine.

Inhibitory Effect of the Ethanol Extract of a Rice Bran Mixture Comprising Angelica gigas, Cnidium officinale, Artemisia princeps, and Camellia sinensis on Brucella abortus Uptake by Professional and Nonprofessional Phagocytes

  • Hop, Huynh Tan;Arayan, Lauren Togonon;Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Baek, Eun Jin;Min, WonGi;Lee, Hu Jang;Lee, Chun Hee;Rhee, Man Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1885-1891
    • /
    • 2017
  • In this study, we evaluated the inhibitory effect of a rice bran mixture extract (RBE) on Brucella abortus pathogenesis in professional (RAW 264.7) and nonprofessional (HeLa) phagocytes. We fermented the rice bran mixture and then extracted it with 50% ethanol followed by gas chromatography-mass spectrometry to identify the components in RBE. Our results clearly showed that RBE caused a significant reduction in the adherence of B. abortus in both cell lines. Furthermore, analysis of phagocytic signaling proteins by western blot assay revealed that RBE pretreatment resulted in inhibition of phosphorylation of JNK, ERK, and p38, leading to decline of internalization compared with the controls. Additionally, the intensity of F-actin observed by fluorescence microscopy and FACS was remarkably reduced in RBE-pretreated cells compared with control cells. However, the intracellular replication of B. abortus within phagocytes was not affected by RBE. Taken together, these findings suggest that the phagocytic receptor blocking and suppressive effects of RBE on the MAPK-linked phagocytic signaling pathway could negatively affect the invasion of B. abortus into phagocytes.

Depletion of Cytoplasmic Tail of UL18 Enhances and Stabilizes the Surface Expression of UL18

  • Kim, Jung-Sik;Kim, Bon-Gi;Yoon, Il-Hee;Kim, Sang-Joon;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • v.8 no.4
    • /
    • pp.130-136
    • /
    • 2008
  • Background: Human cytomegalovirus UL18, a MHC class I homologue, has been considered a natural killer (NK) cell decoy. It ligates LIR-1/ILT2 (CD85j), an NK inhibitory receptor, to prevent lysis of infected target cells. However, precise role of UL18 to NK cell cytotoxicity is yet elusive. Difficulty in clarifying the function of UL18 lies in complication in detecting UL18 mainly due to low level expression of UL18 on the surface and gradual loss of its expression. Methods: To overcome this hurdle, cDNA of cytoplasmic tail-less UL18 was constructed and expressed in swine endothelial cell (SEC). The expression level and its stability in the cell surface were monitored with FACS analysis. Results: Surface expression of UL18 is up-regulated by removing cytoplasmic tail portion from UL18F (a full sequence of UL18). SECs transfected with a cDNA of UL18CY (a cytoplasmic tail-less UL18) stably expressed UL18 molecule on the surface without gradual loss of its expression during 6 week continuous cultures. In the NK cytotoxicity assay, UL18 functions either inhibiting or activating NK cell cytotoxicity according to the source of NK cells. We found that there is individual susceptibility in determining whether the engagement of NK cell and UL18 results in overall inhibiting or activating NK cell cytotoxicity. Conclusion: In this study, we found that cytoplasmic tail is closely related to the regulatory function for controlling surface expression of UL18. Furthermore, by constructing stable cell line in which UL18 expression is up-regulated and stable, we provided a useful tool to clarify exact functions of UL18 on various immune cells having ILT2 receptor.

The effects of Bee Venom on NO, H2O2 in Raw 264.7 cells and IL-1 in D10S cells (봉약침액(蜂藥鍼液)이 NO, H2O2, IL-1에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Song, Jeong-Yeol;Lee, Seong-No;Jo, Hyun-Chul;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.5 no.2
    • /
    • pp.52-62
    • /
    • 2002
  • Objectives : The purpose of this study was to investigate the effects of Bee Venom on NO, $H_2O_2$ expression induced by LPS in Raw 264.7 cells as a murine marcrophage cell line and on IL-1 expression induced by LPS in D10S cells. Methods : The expression of NO was measured by MTT Assay and IL-1 by MTS Assay. The expression of $H_2O_2$ was measured as ROS level within the cell using by FACS analysis. The non-toxic concentration(from $0.1\;{\mu}g/ml\;to\;5\;{\mu}g/ml$) of Bee Venom was determined by MTT Assay. Results : 1. Bee Venom inhibited the NO expression. The effective concentration of Bee Venom was $5\;{\mu}g/ml$ after 3 hours, 1 and $5\;{\mu}g/ml$ after 1 day and 2 days. The all concentration of Bee Venom inhibited the NO expression after 6, 12 hours and 3 days. 2. Bee Venom inhibited the $H_2O_2$ expression in a dose-dependent manner compared to the control. 3. Bee Venom could not significantly inhibit the IL-1 expression.

Overexpression of Anti-apoptotic Molecules and Sax Translocation to Mitochondria by Pharbitis Nil Extracts in AGS

  • Ko Seong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1843-1849
    • /
    • 2004
  • Conventional medicines have usually sorted to a number of treatments such asoperation, radiotherapy, and chemotherapy. The existing anti-cancer agents, designed to eradicate cancer cells, have strong toxicities, also with leading to harmful side effects. Recently, a number of researches on natural products have been actively carried out in efforts to develop new treatments that can decrease side effects or increase anti-cancer effects. We performed this study to understand the molecular basis underlying the antitumor effects of Pharbitis nil, and Plantago asiatica, which have been used for herbal medicinal treatments against cancers in East Asia. We analyzed the effects of these medicinal herbs on proliferation and on expression of cell growth/apoptosis related molecules, with using an AGS gastric cancer cell line. The treatment of Pharbitis nil dramatically reduced cell viabilities in a dose and time-dependent manner, but Plantago asiatica didn't. FACS analysis and Annexin V staining assay also showed that Pharbitis nil induce apoptotic cell death of AGS. Expression analyses via RT-PCR and Western blots revealed that Pharbitis nil didn't increase expression of the p53 and its downstream effector p21/sup wafl/, and that the both increased expression of apoptosis related Sax and cleavage of active caspase-3 protein. We also confirmed the translocation of Sax to mitochondria. Collectively, our data demonstrate that Pharbitis nilinduce growth inhibition and apoptosis of human gastric cancer cells, and these effects are correlated with down- and up-regulation of growth-regulating apoptotic and tumor suppressor genes, respectively.

Effects of Baekgumhwan administration on immune-function in ICR mice stressed by electric footshock (백금환(白金丸)의 경구 투여가 전기자극 스트레스를 받은 mouse의 비장에 존재하는 면역 세포 분획과 사이토카인 생성에 미치는 영향)

  • Joo, Seung-Gyun;Kim, Geun-Woo;Koo, Byung-Soo;Shim, Sang-Min
    • Journal of Oriental Neuropsychiatry
    • /
    • v.13 no.1
    • /
    • pp.39-52
    • /
    • 2002
  • The present experiments were designed to study the influence of Baekgumhwan on immune function of ICR mice under stress condition. Baekgumhwan was orally administered to the mice for 15days. on the 11th day the mice subjected to electric footshock for 5days(2 session a day, 11 footshocks a 31 min-session). B/T cell populations in splenocytes were studied by FACS analysis and cytokines($IFN-{\gamma}$ rand IL-10) production of the mouse splenocytes treated with PHA were studied by sandwich ELISA assay on the 15th day. The results were as follows. 1. After electric footshock, mice became sluggish and crowded to one side of the cage. Increased B/T cell populations in splenocytes were observed. These results confirm that electric footshock caused stress inducing immunological and behavioral changes in ICR mice. 2. Baekgumhwan administration without stress increase B cell populations in splenocytes, but T cell populations and cytokines($IFN-{\gamma}$ and IL-10) production of the mouse splenocytes treated with PHA maintain as similar levels as in the normal group. 3. Baekgumhwan administration with stress significantly antagonized the effect of electric footshock on behavior, increased B cell populations in splenocytes, so maintain as similar levels as in the normal group. cytokines($IFN-{\gamma}$ rand IL-10) production of the mouse splenocytes treated with PHA maintain as similar levels as in the normal group and T cell populations in splenocytes were increased as stress control.

  • PDF

Anti-tumor Effect of Kaempferol, a Component of Polygonati Rhizoma, in Lung Cancer Cells (폐암세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 항암 효능)

  • Jeong, Young-Seok;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.816-822
    • /
    • 2011
  • Kaempferol, a component of Polygonati rhizoma, is one of the herbal flavonoids, which is used in therapeutic agent for anti-hypercholesterol, anti-hypertension and anti-diabetes. And it is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. To address molecular mechanism underlying kaempferol-induced anti-cancer effects, we determined the effect of kaempferol on cell growth of the lung cancer cell lines, A549, H1299 and H460. From the FACS analysis, measurement of caspase activity, DAPI and tryptophan blue staining, and DNA fragmentation assay, we found that kaempferol induces apoptosis and H460 cells are most sensitive among the tested cell lines. In addition, we performed microarray to identify the genome-wide expression profiling regulated by kaempferol. Lots of cell cycle-related genes were under-expressed, whereas the genes related to TGF-beta/SMAD pathway were over-expressed in kaempferol-treated H460 cells. Additionally, kaempferol also increased expression levels of apoptosis related genes such as death receptors, FAS, TRAIL-R and TNF-R, and casepase-8 and caspase-10. Overall, our results suggest that kaempferol promotes anti-lung cancer therapeutic effects by inducing G1 arrest and apoptosis through TGF-beta/SMAD pathway and death receptors/caspase pathway, respectively.

Suppressive Effects of GHS in Knee Joint, Regional Lymph Nodes, and Spleen on Collagen-induced Arthritis in Mice (Collagen II로 유도된 CIA 관절염 생쥐의 대한 가미해동피산(加味海桐皮散)의 억제 효과)

  • Kim, Nam-Uk;Kim, Dong-Hui
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1233-1242
    • /
    • 2007
  • Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic inflammation characterized by hyperplasia of synovial cells in affected joints, which might be mediated by the altered activation of Immune system, ultimately leading to the destruction of cartilage and bone. To examine effects of GHS on rheumatoid arthritis DBA/1J mice were immunized with bovine type II collagen to induced arthritis and then treated with GHS once a day for 7 weeks. Oral administration of GHS (200 mg/Kg) significantly suppressed the progression of CIA, which extend is comparable to that of methotrexate (MTX, 0.3 mg/Kg), a positive control. The severity of arthritis within the knee joints, which was evaluated by histological assessment of cartilage destruction and pannus formation, was also lowered by GHS. The production of TNF-and IL-6 in serum was significantly suppressed. The levels of IFN-g in the culture supernatant of splenocytes stimulated with CD3/CD28 or collagen were dramatically decreased, while those of IL-4 was increased. The levels of IgG and IgM RA factor were also decreased in the serum. FACS analysis indicated that B cells (in DLN), CD3+ T cells (in spleen, and paw joint), CD11b+Gr-1+ cells (in paw joint), CD3+CD49b(DX5) (in PBMC) were decreased and there was increased proportion of CD3+, CD4+, CD8+, CD4+CD25+ T cells in DLN. In conclusion, our results demonstrates that GHS significantly suppressed the progression of CIA and this action was characterized by the decreased production of TNF-a, IL-6, and rheumatoid factors, and modulations of immune cell populations.

Anti-cancer Effects of Costunolide in Estrogen Receptor Positive MCF-7 Breast Cancer Cells (에스트로겐 수용체 양성 MCF-7 유방암 세포주에 대한 costunolide의 항암효과)

  • Kim, Woon Ji;Choi, Youn Kyung;Woo, Sang Mi;Park, Nam Gyu;Jung, Hye In;Kim, Yong Gook;Shin, Yong Cheol;Ko, Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • Costunolide ($C_{15}H_{20}O_2$) is a sesquiterpene lactone that was isolated from many herbal medicines and it has diverse effects (anti-viral, anti-fungal, and anti-inflammatory) according to previous reports. However, the anti-cancer effects of Costunolide and its mechanism of actions are not well known in estrogen receptor positive breast cancer. In this study, we observed that costunolide suppresses cell growth in estrogen receptor positive MCF-7 breast cancer cells as shown by MTT assay and soft agar colony formation assay. To examine the mechanism by which costunolide inhibits MCF-7 cell growth, we performed FACS analysis. We found that costunolide induced G2/M and S cell cycle arrest, and regulated cycle-related protein expression. In addition, costunolide inhibited ERK signaling pathway and induced autophagy. Therefore, costunolide might be a good and useful chemotherapy agent for estrogen receptor positive breast cancer patients.

Osteogenic Differentiation of Circulating Peripheral Blood Derived Mesenchymal Progenitor Cells (말초혈액 유래 간엽전구세포의 골분화)

  • Eun, Seok Chan;Kim, Jin Hee;Heo, Chan Yeong;Baek, Rong Min;Chang, Hak;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.35 no.3
    • /
    • pp.229-234
    • /
    • 2008
  • Purpose: There are some reports presenting that peripheral blood contain circulating hematopoietic cells as well as, in significantly smaller quantities, mesenchymal stem cells. The purposes of this study is to isolate and characterize circulating mesenchymal progenitor cells with osteogenic potential from human peripheral blood. Methods: Human buffycoat containing mononuclear cells was harvested from peripheral blood of normal persons and isolated using a density gradient centrifugation and serially subcultured in osteogenic media for 1-4 weeks. The proliferation capability, phase-contrast microscopy, transmission electron microscopy, immunophenotype FACS analysis, Alizarin red staining and RT-PCR assays for osteogenic differentiation potential were performed. Results: The phenotype of cultured cells changed from small round or cuboidal cells at passage 1 into large spindle-shaped fibroblastic morphology cells at passage 4. Surface marker expressed CD14, but did not express CD34, CD80, CD83. Strong positive staining was observed for Alizarin reds in osteogenic medium on day 14, Using RT-PCR, the mRNA levels of bone- specific genes, such as ALP, c-bfa-1 and osteocalcin were detected. Conclusion: A new subset of peripheral blood derived progenitor cells described here has the ability to proliferate and differentiate into osteogenic cell lineages in vitro, and to be candidate for regenerative therapy.