• Title/Summary/Keyword: FAA(federal Aviation Administration)

Search Result 37, Processing Time 0.018 seconds

Comparative Analysis of Circling Approach Procedure Design Standards Applied to Domestic Airports (국내 공항에 적용된 선회접근 절차 설계기준의 비교 분석)

  • Dong-kwan Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.272-277
    • /
    • 2024
  • In most countries, instrument flight procedures are designed by applying one of the following standards: the International Aviation Organization's DOC 8168, Air Navigation Services and Operation Procedures (PANS-OPS), or the US Federal Aviation Administration's TERPS, Terminal Procedures. In particular, the circling approach procedure has many differences between the two standards, and the US terminal procedure (TERPS) has become more complicated since 2013 by applying expanded standards depending on altitude. The circling approach procedures are more risky than straight-in approach procedures because it involves maneuvering the aircraft close to the ground at low energy for landing. In order to accurately understand these differences, this study provides to distinguish by what criteria the circling approach procedure is designed according to individual domestic airports in Korea, to calculate the radius for the range of circling approach areas that guarantee minimum obstacle avoidance during circling approach maneuvers, and to present methods for performing safe circling approach procedures.

Study on Verification Methodology of Airworthiness Requirements for Bird Strike on Civilian Helicopter based on Numerical Analysis (수치해석을 통한 민수용 헬리콥터의 조류충돌 인증 요구도 검증기법에 대한 연구)

  • Kim, Dong-Hyeop;Kim, Sang-Woo;Kim, Hyun-Gi;Kim, Sungchan;Shin, Bok Kyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.70-79
    • /
    • 2019
  • The increase of bird strike requires to be amended more safely current airworthiness requirements for bird strike. The USA and Europe are considering the methodology to verify the bird strike requirements based on the finite element analysis (FEA). Meanwhile, the aircraft airworthiness standards in Korea enacted by the Ministry of Land, Infrastructure and Transport were based on those enacted by the Federal Aviation Administration (FAA). This means that the verification methods using the FEA for the bird strike requirements should be reflected in the airworthiness standards in Korea. Our study proposes the methodology for bird strike simulation based on the FEA for the external auxiliary fuel tank assembly on the Surion helicopters and confirmed that the numerical outputs corresponded to the test results. The authors suggest that the methodology and procedure based on the FEA are adopted not only in the bird strike requirements but in various aircraft certifications of civilian rotorcraft.

Modeling of Space Radiation Exposure Estimation Program for Pilots, Crew and Passengers on Commercial Flights

  • Hwang, Junga;Dokgo, Kyunghwan;Choi, Enjin;Park, Jong-Sun;Kim, Kyung-Chan;Kim, Hang-Pyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O'Neill 2010.

Analysis of Cable Protection of Duct in Lightning and HIRF Environment of UAM Aircraft and a Proposal for Certification Guidance (UAM 항공기 낙뢰 및 HIRF 환경에서 덕트의 케이블 보호 성능 분석 및 인증기술에 관한 연구)

  • Kim, Dong-Hyeon;Jo, Jae-Hyeon;Kim, Yun-Gon;Lee, Hakjin;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.23-34
    • /
    • 2022
  • Cities around the world are increasing their demand for Urban Air Mobility (UAM) aircraft due to traffic congestion with population concentration. Aircraft with various shapes depending on fixed-wing and propulsion systems, are being prepared for commercialization. Airworthiness certification is required as it is a manned transportation vehicle that flies in the city center and transports people on board. UAM aircraft are vulnerable to lightning and HIRF environments due to the increasing use of composite materials, the use of electric motors, and use of electronic equipment. Currently, the development of certification technology, guidelines, and requirements in lightning and HIRF environments for UAM aircraft is incomplete. In this study, the certification procedures for lightning and HIRF indirect impacts of rotorcraft shown in AC 20-136B and AC 20-158A issued by the Federal Aviation Administration (FAA), were verified and applied to the computerized simulation of UAM aircraft. The impact of lightning and HIRF on ducted fan UAM aircraft was analyzed through computerized simulation, and the basis for establishing practical guidelines for certification of UAM aircraft to be operated in the future is presented.

A Suitability Study and Development of Low Strength Perlite Concrete as Aircraft Rapid Arresting System (항공기 과주방지 포장시스템에 적합한 저강도 펄라이트 콘크리트의 개발 및 적합성 연구)

  • Kim, Choon-Seon;Lee, Young-Soo;Ha, Wook-Jai;Han, Jae-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.59-70
    • /
    • 2010
  • More than 10 different cases of airline overrun accidents happened annually home and abroad in recent years. So the government put the guidelines to protect that kinds of accidents, which is named 'Runway End Safety Area'. However, the great part of airports are far from the standards, because most of the airports have been built before the guidelines. Moreover, in many cases natural obstacles, ambiance, and local area developments obstruct the extension of the runway to meet the criteria. For these reasons, the Federal Aviation Administration (FAA) recommends that the aviation fields construct 'Aircraft Rapid Arresting System(ARAS)' at the end of the runway. Many airdromes have been constructing the system and some airports have already completed the construction. In this research, our team performed a basic study about low strength perlite concrete to provide the proper material with 'ARAS'. As a result, the unit weight of the low strength perlite concrete was $4.5{\sim}6.4kN/m^3$ and uniaxial compressive strength was measured in the range of $400{\sim}1,470kN/m^2$. In addition, we tested penetration compressive strength by using CBR tester, and we observed that the strength was increased after around 60% of penetration rate. Also, 40% of penetration rate was measured through the penetration test with dump trucks.

Development of Three-Dimensional Finite Element Model for Structural Analysis of Airport Concrete Pavements (공항 콘크리트 포장 구조해석을 위한 3차원 유한요소 모형 개발)

  • Park, Hae Won;Shim, Cha Sang;Lim, Jin Seon;Joe, Nam Hyun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading. METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model. RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis. CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF