DOI QR코드

DOI QR Code

Analysis of Cable Protection of Duct in Lightning and HIRF Environment of UAM Aircraft and a Proposal for Certification Guidance

UAM 항공기 낙뢰 및 HIRF 환경에서 덕트의 케이블 보호 성능 분석 및 인증기술에 관한 연구

  • Kim, Dong-Hyeon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Jo, Jae-Hyeon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kim, Yun-Gon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Lee, Hakjin (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Myong, Rho-Shin (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • 김동현 (경상국립대학교 기계항공공학부) ;
  • 조재현 (경상국립대학교 기계항공공학부) ;
  • 김윤곤 (경상국립대학교 기계항공공학부) ;
  • 이학진 (경상국립대학교 기계항공공학부) ;
  • 명노신 (경상국립대학교 기계항공공학부)
  • Received : 2022.02.11
  • Accepted : 2022.05.16
  • Published : 2022.06.30

Abstract

Cities around the world are increasing their demand for Urban Air Mobility (UAM) aircraft due to traffic congestion with population concentration. Aircraft with various shapes depending on fixed-wing and propulsion systems, are being prepared for commercialization. Airworthiness certification is required as it is a manned transportation vehicle that flies in the city center and transports people on board. UAM aircraft are vulnerable to lightning and HIRF environments due to the increasing use of composite materials, the use of electric motors, and use of electronic equipment. Currently, the development of certification technology, guidelines, and requirements in lightning and HIRF environments for UAM aircraft is incomplete. In this study, the certification procedures for lightning and HIRF indirect impacts of rotorcraft shown in AC 20-136B and AC 20-158A issued by the Federal Aviation Administration (FAA), were verified and applied to the computerized simulation of UAM aircraft. The impact of lightning and HIRF on ducted fan UAM aircraft was analyzed through computerized simulation, and the basis for establishing practical guidelines for certification of UAM aircraft to be operated in the future is presented.

UAM (Urban Air Mobility) 항공기에 대한 수요가 세계 각 도시들은 인구집중으로 인한 교통체증 문제로 늘어나고 있다. 세계 각국에서 고정익 날개의 유무와 추진 시스템에 따라 다양한 형태를 가진 항공기가 연구개발을 통해 상용화 준비 중이며, 도심을 비행하고 사람이 탑승하는 유인운송수단이므로 감항증명이 요구된다. UAM 항공기는 복합재 사용 비중 증가, 전기모터 사용, 다양한 전자 장비 탑재 등 낙뢰 및 HIRF 환경에 취약하다. 현재 UAM 항공기에 대한 낙뢰 및 HIRF 환경에서의 인증기술과 지침 및 요건 개발은 미비한 상태이다. 본 연구에서는 미연방항공청(FAA)에서 발행한 AC 20-136B와 AC 20-158A에 나타난 회전익 항공기의 낙뢰 및 HIRF 간접 영향에 대한 적합성 인증 절차를 확인하고 UAM 항공기 전자기 전산 시뮬레이션에 적용하였다. 덕티드 팬 형 UAM 항공기에 대한 낙뢰 및 HIRF 영향성을 전산 시뮬레이션을 통해 분석하였고, 향후 운용될 UAM 항공기의 인증을 위한 실무지침 수립의 근거를 제시하였다.

Keywords

Acknowledgement

이 논문은 국토교통부와 국토교통과학기술진흥원 및 항공안전기술원의 민수헬기인증개발사업과제(21CHTR-C128889-05)의 지원을 받아 수행되었습니다.

References

  1. C. J. Hwang, "Status and challenges of urban air mobility development." Current Industrial and Technological Trends in Aerospace, vol. 16, no .1, pp. 33-41, Jul. 2018.
  2. Y. Jun, K. R. Oh, J. Lee, and K. H. Chung, "Urban air mobility trend," Current Industrial and Technological Trends in Aerospace, vol. 18, no .1, pp. 37-48, Jul. 2020.
  3. M. Ryu, L. Cho, and J. Cho, "The effect of tip clearance on performance of a counter-rotating ducted fan in a VTOL UAV," Transactions of the Japan Society for Aeronautical and Space Sciences, vol. 60, no. 1, pp. 1-9, May. 2017. https://doi.org/10.2322/tjsass.60.1
  4. Y. Deng, "Experimental investigation on ground effect of ducted fan system for VTOL UAV." Asia-Pacific International Symposium on Aerospace Technology, pp. 1602-1609, Oct. 2018.
  5. W. Y. Kim, S. Senguttuvan, and S. M. Kim. "Effect of rotor spacing and duct diffusion angle on the aerodynamic performances of a counter-rotating ducted fan in hover mode." Processes, vol. 8, no. 11, p. 1338, Oct. 2020. https://doi.org/10.3390/pr8111338
  6. K. H. Chung, H. J. Kang, H. D. Kim, and C. J. Hwang, "Study on aeroacoustic analysis and noise reduction of the ducted fan for the helicopter tail fan," Aerospace Engineering and Technology, vol. 3, no. 1, pp. 45-55, Jul. 2004.
  7. EASA, "MOC SC-VTOL-01: Proposed means of compliance with the special condition VTOL," May. 2020.
  8. J. B. O'Loughlin, and S. R. Skinner "General aviation lightning strike report and protection level study," Office of Aviation Research, Federal Aviation Administration, Aug. 2004.
  9. J. J. Kim, S. T. Baek, D. G. Song, and R. S. Myong, "Computational simulation of lightning strike on aircraft and design of lightning protection system." Journal of the Korean Society for Aeronautical & Space Sciences, vol. 44, no. 12, pp. 1071-1086, Dec. 2016. https://doi.org/10.5139/JKSAS.2016.44.12.1071
  10. S. W. Park, Y. G. Kim, Y. S. Kang, and R. S. Myong, "Analysis of effects of lightning on PAV using computational simulation and a proposal to establish certification guidance." Journal of Aerospace System Engineering, vol. 13, no. 6, pp. 60-69, Dec. 2019. https://doi.org/10.20910/JASE.2019.13.6.60
  11. Y. G. Kim, H. Jo, J. H. Jo, S. W. Park, and R. S. Myong, "Investigation of effects of lightning and icing on an e-VTOL UAM aircraft and a proposal for certification guidance," Journal of Aerospace System Engineering, vol. 15, no. 3, pp. 45-56, Jun. 2021. https://doi.org/10.20910/JASE.2021.15.3.45
  12. J. H. Jo, Y. G. Kim, S. W. Park, and R. S. Myong, "A study of certification of lightning indirect effects on cable harness in personal air vehicles." Journal of the Korean Society for Aeronautical & Space Sciences, vol. 49, no. 3, pp. 251-262, Mar. 2021. https://doi.org/10.5139/JKSAS.2021.49.3.251
  13. H. J. Jang, T. S. Song, and O. S. Jo, "Technological trends for testing and evaluation of extreme electromagnetic environment in aviation," The Institute of Electronics and Information Engineers, vol. 44, no. 10, pp. 47-53, Oct. 2017.
  14. S. Y. Kim, "Aircraft EMC technology trends," Korea Electromagnetic Engineering Society, vol. 31, no. 1, pp. 60-71, Jan. 2020.
  15. FAA, "AC 20-158A: The certification of aircraft electrical and electronic systems for operation in the high-intensity radiated fields (HIRF) environment," May. 2014.
  16. SAE International, "SAE ARP 5583A: Guide to certification of aircraft in a high-intensity radiated field (HIRF) environment," Jun. 2010.
  17. J. A. Stallins, and L. S. Rose, "Urban lightning: current research, methods, and the geographical perspective." Geography Compass, vol. 2, no. 3, pp. 620-639, May. 2008. https://doi.org/10.1111/j.1749-8198.2008.00110.x
  18. F. Moupfouma, "Aircraft structure paint thickness and lightning swept stroke damages." SAE International Journal of Aerospace, vol. 6, pp. 392-398, Sep. 2013. https://doi.org/10.4271/2013-01-2135
  19. Y. G. Kim, J. H. Jo, D. H. Kim, H. Lee, and R. S. Myong, "Effects of lightning on UAM aircraft: Complex zoning and direct effects on composite prop-rotor blade," Aerospace Science and Technology, vol. 124, 107560, May. 2022. https://doi.org/10.1016/j.ast.2022.107560
  20. S. H. Han, "Quality certification of avionics components in HIRF environment," The Institute of Electronics and Information Engineers, vol. 29, no. 11, pp. 99-107, Nov. 2002.
  21. J. Jung, S. Yoo, and B. Yi. "Study on aircraft HIRF protection design and certification process." Journal of Aerospace System Engineering, vol. 7, no. 2, pp. 47-54, Jun. 2013. https://doi.org/10.20910/JASE.2013.7.2.047
  22. M. Apra, M. D'Amore, K. Gigliotti, M. S. Sarto, and V. Volpi, "Lightning indirect effects certification of a transport aircraft by numerical simulation." IEEE Transactions on Electromagnetic Compatibility, vol. 50, no. 3, pp. 513-523, Aug. 2008. https://doi.org/10.1109/TEMC.2008.927738
  23. M. Zhang, and Z. Huang. "Transient current burst analysis induced in cable harness due to direct lightning strike on aircraft." 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, IEEE, pp. 1197-1200, Apr. 2010.
  24. L. Huang, C. Gao, F. Guo, and C. Sun, "Lightning indirect effects on helicopter: numerical simulation and experiment validation." IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 4, pp. 1171-1179, Aug. 2017. https://doi.org/10.1109/TEMC.2017.2651900
  25. G. G. Gutierrez, J. Alvarez, E. Pascual-Gil, M. Bandinelli, R. Guidi, V. Martorelli, and S. G. Garcia, "HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method." IEEE transactions on electromagnetic compatibility, vol. 56, no. 4, pp. 854-863, Aug. 2014. https://doi.org/10.1109/temc.2013.2291680
  26. G. G. Gutierrez, T. McDonald, C. R. Panos, R. M. Castejon, H. Tavares, H. G. Perez, and E. Pascual-Gil, "Predictive capacity of FDTD method embedding MTLN technique for lightning and HIRF threats." Progress In Electromagnetics Research C, vol. 107, pp. 33-47, Nov. 2021. https://doi.org/10.2528/PIERC20092006
  27. FAA, "AC 20-136B: Aircraft electrical and electronic system lightning protection certification," Sep. 2011
  28. SAE International, "SAE ARP 5415B: User's manual for certification of aircraft electrical/electronic systems for the indirect effects of lightning," Mar. 2020.
  29. SAE International, "SAE ARP 5414B: Aircraft lightning zone," Dec. 2018.
  30. Technical Handbook & Catalog, Standard wire & cable, 2006.
  31. H. G. Jeong, S. H. Ji, D. E. Lee, and D. Y. Jang, "A study on electromagnetic wave numerical analysis software," The Korean Institute of Electromagnetic Engineering and Science, vol. 28, no. 6, pp. 48-58, Nov. 2017.
  32. Radio Technical Commision for Aeronautics (RTCA) DO-160G, "Environmental conditions and test procedures for airborne equipment section 22-lightning induced transient susceptibility," Dec. 2010.