• Title/Summary/Keyword: FA test

Search Result 251, Processing Time 0.028 seconds

Shear Strength Prediction of Reinforced Concrete Members Subjected In Axial force using Transformation Angle Truss Model (변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측)

  • Kim Sang-Woo;Lee Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.813-822
    • /
    • 2004
  • For the prediction of the shear strength of reinforced concrete members subjected to axial force, this paper presents a truss model, Transformation Angle Truss Model (TATM), that can predict the shear behavior of reinforced concrete members subjected to combined actions of shear, axial force, and bending moment. In TATM, as axial compressive stress increases, crack angle decreases and concrete contribution due to the shear resistance of concrete along the crack direction increases in order to consider the effect of the axial force. To verify if the prediction results of TATM have an accuracy and reliability for the shear strength of reinforced concrete members subjected to axial forces, the shear test results of a total of 67 RC members subjected to axial force reported in the technical literatures were collected and compared with TATM and existing analytical models(MCFT RA-STM and FA-STM). As a result of comparing with experimental and theoretical results, the test results was better predicted by TATM with 0.94 in average value of $\tau_{test}/\tau_{ana}$. and $11.2\%$ in coefficient of variation than other truss models. And theoretical results obtained from TATM were not effect by steel capacity ratio, axial force, shear span-to-depth ratio, and compressive steel ratio.

A Study on the Rheology Properties for Development of Sprayed High Performance Fiber Reinforced Cementitious Composites for Protection and Blast Resistant (방호·방폭용 뿜칠형 고성능 섬유보강 시멘트 복합재료 개발을 위한 레올로지 특성 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Park, Man-Seok;Sung, Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.188-195
    • /
    • 2014
  • This paper was evaluated the rheology properties according to each step of paste, mortar and HPFRCC as a part of the basic study to development of sprayed high performance fiber reinforced cementitious composites(HPFRCC) for protection and blast resistant. Rheology test results in step of paste, in case of GGBFs and FA, it showed that the plastic viscosity and yield stress reduced gradually according to the increase of mixing rate, and in case of SF, the plastic viscosity and yield stress increased radically starting from the mixing rate of 10%. Rheology test results in step of mortar, type of aggregates, it showed that particle shape and grading of aggregate is influence on plastic viscosity and yield stress, and change of volume ratio is influence on plastic viscosity than yield stress. Fluidity and rheology test results in step of HPFRCC, if after a fiber mixed, it showed that viscosity agent is more effective to improve the fluidity and fiber dispersion than superplasticizer.

Fire Resistance Properties of High Strength Concrete Made with Various Admixture Types and Fiber Content (혼화재 종류 및 섬유 혼입률 변화에 따른 고강도 콘크리트의 내화특성)

  • Jang, Ki-Hyun;Pei, Chang-Chun;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.63-66
    • /
    • 2007
  • This study investigates the fire resistance properties of high strength concrete, around 60MPa class, designed with various admixture types and fiber content. Test showed that the increase of fiber content decreased the fluidity and slightly inclined the air content of fresh concrete. However, the fiber content in concrete did not affect the compressive strength. For the addition of admixture, specimens adding the shrinkage-reducing-agent (SR) indicated the strength value at 70MPa, which is followed by incorporating silica fume (SF) at 66MPa, the combination of expansive admixture (EA) and SR at 63MPa, only EA at 59MPa, blast furnace slag (BS) at 58MPa and fly ash (FA) at 50MPa in an order. After completing the fire test, all specimens adding 0.05vol.% of polypropylene fiber exhibited protection of spatting, except for the specimens incorporating loft of SF and incorporating 20% of SF with only SR and the combination of EP and SRA, respectively. Therefore the most effective result of this study was shown in the specimens incorporating love of FA and 30% of BS and incorporating 20% of SF with 5 % of EA. It is expected that this test results will be crucial references in near future to develope the spatting resistance method of high strength concrete.

  • PDF

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

Anti-diabetic effect of Yukmijihwangtang-Jahage in obese Zucker rats (초록 : 비만 실험동물쥐 (obese Zucker rats)에서의 육미지황탕의 항당뇨 효과)

  • Kim, Cheorl-Ho;Seo, Eun-Kyung;Kang, Dong-Hwi;Seo, Jin-Woo;Kim, Kyoung-Sook;Lee, Tae-Kyun;Lee, Young-Choon;Nam, Kyung-Soo
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.388-396
    • /
    • 2000
  • The effect of the traditional herbal medicine Yukmijihwangtang-Jahage(YJ) on the improvement of insulin resistance and lipid profile was studied using a model for non-insulin dependent diabetes mellitus, lean (Fa/-) and obese (fa/fa) Zucker rats. Yukmijihwangtang-Jahage feeding for 4 weeks resulted in a significant decrease in the concentration of plasma triglyceride in both lean and obese Zucker rats. Furthermore, Yukmijihwangtang-Jahage markedly decreased both plasma cholesterol and fasting plasma insulin, and significantly decreased the postprandial glucose level at 30 min during oral glucose tolerance test in obese Zucker rats. Although there was no statistical significance, the crude glucose transporter 4 protein level of Yukmijihwangtang-Jahage dieted obese rats tended to increase when compared to that of obese control rats. Therefore, the present results suggested that Yukmijihwangtang-Jahage may be useful in prevention and improvement of metabolic disorders characterized by hyperinsulinemia states such as non-insulin dependent diabetes mellitus, syndrome X and coronary artery disease.

  • PDF

Effects of Surface Material of Forms on Durability of Offshore Concrete (구조물의 표면마감 특성이 해양콘크리트의 내구성에 미치는 영향)

  • Park, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.233-240
    • /
    • 2008
  • This paper presents an experimental study on the air contents and the chloride penetration in offshore concrete depending on the types of forms. Three types of concretes(plain, MSF, and FA concretes) with four kinds of forms(wood, coating wood, steel, and polypropylene film) were investigated. The test results show that the air contents in the concrete cured with steel and polypropylene forms were higher than those with wood and coating wood forms. The concrete with wood forms has the least air content. The variation of chloride ingress time was large depending on the types of forms on the same concrete, i.e. 13.2, 20.3, and 17.7% for Plain, MSF, and FA concretes, respectively. Consequently, the surface conditions of forms should be considered for design of durable concrete.

Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery (효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성)

  • Heo, Sun-Heang;Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.454-459
    • /
    • 2007
  • Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In $^1H-NMR$ spectra, specific peaks appeared both of FA and LMWSC in $D_2O$. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. hi vitro transfection efficiency was assayed by fluorescence spectroscopy WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.

Basic Properties of Latex-Modified Concrete Using Fly-ash (플라이애쉬를 이용한 라텍스개질 콘크리즈의 기초물성 연구)

  • Hong, Chang-Woo;Jeong, won-Kyong;Kim, Kyong-jin;Yun, Kyong-ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.205-211
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of fly-ash on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete (OPC). Main experimental variables were latex contents (0%, 10%, 15%) and fly-ash content (0, 10%, 20%, 30%). Air content and slump tests were performed to check the basic properties of fresh concretes, and compressive strength, flexural strength, rapid chloride ion permeability and chemical resistance were measured to analyze the basic properties of hardened concretes. The test results showed that air contents of LMC with fly ash decreased as fly-ash contents increased from 0% to 30%. Compressive and flexural strength developments of LMC with fly ash were quite similar to those of LMC without fly ash. However, the long-term flexural strength development of LMC with fly ash after 90 days were bigger than that of LMC without fly ash. Chloride ion permeability and chemical resistance decreased rapidly as the content of fly ash increased. Thus, fly ash could be used at LMC in order to reduce water permeability.

Chloride Penetration Analysis of Fly Ash Concrete using Potentiometric Titration and XRF (플라이애시를 혼입한 콘크리트의 전위차 적정법과 XRF를 이용한 염화물 침투 분석 )

  • Eun-A Seo;Ji-Hyun Kim;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.16-22
    • /
    • 2023
  • In this study, a salt water immersion test was performed on concrete specimens simulating the concrete mix design of the nuclear power plant, and the correlation between the amount of chloride and the XRF component according to the depth of the concrete was analyzed. The amount of chloride on the surface of the nuclear power plant concrete increased slightly with increasing immersion time in salt water, but the amount of chloride in the depth of 5.5 mm or more showed a clear tendency to increase with increasing immersion time in salt water. As a result of analyzing the correlation between the amount of chloride in concrete and the XRF component, the concrete with 20% FA substitution compared with the OPC concrete showed a very high correlation between the composition ratio of Cl ions and the evaluation result of salt damage resistance by XRF component analysis. Accordingly, it was confirmed that chlorine ion analysis and salt damage resistance performance evaluation by XRF component analysis were possible through repeated data accumulation in the nuclear power plant concrete mix with 20% fly ash replacement.

Characteristic of Chloride ion Diffusion in Mortar According to the Substitution Ratios of the Additive (혼합재 치환율에 따른 모르타르의 염소이온 확산 특성)

  • 양승규;정연식;이웅종;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.17-22
    • /
    • 2002
  • Chloride ions have a tendency to penetrate into concrete and proceed the corrosion by depassivating rebar surface. Thus the deteriorated concrete is subject to experience severe degrading of durability under marine environment. Physical properties of mortar, such as, compressive strength and penetration depth of chloride ion were investigated. And to investigate the effect of containing SG, FA in mortar, the diffusion coefficient of chloride was measured through an electro - migration test. The diffusion coefficient of chloride was decreased with the increase of replacement ratio of SG compared with plain specimen.

  • PDF