• Title/Summary/Keyword: F2812

Search Result 104, Processing Time 0.023 seconds

Implementation of a 35KVA Converter Base on the 3-Phase 4-Wire STATCOMs for Medium Voltage Unbalanced Systems

  • Karimi, Mohammad Hadi;Zamani, Hassan;Kanzi, Khalil;Farahani, Qasem Vasheghani
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.877-883
    • /
    • 2013
  • This paper discussed a transformer-less shunt static synchronous compensator (STATCOM) with consideration of the following aspects: fast compensation of the reactive power, harmonic cancelation and reducing the unbalancing of the 3-phase source side currents. The STATCOM control algorithm is based on the theory of instantaneous reactive power (P-Q theory). A self charging technique is proposed to regulate the dc capacitor voltage at a desired level with the use of a PI controller. In order to regulate the DC link voltage, an off-line Genetic Algorithm (GA) is used to tune the coefficients of the PI controller. This algorithm arranged these coefficients while considering the importance of three factors in the DC link voltage response: overshoot, settling time and rising time. For this investigation, the entire system including the STATCOM, network, harmonics and unbalancing load are simulated in MATLAB/SIMULINK. After that, a 35KVA STATCOM laboratory setup test including two parallel converter modules is designed and the control algorithm is executed on a TMS320F2812 controller platform.

A Direct Torque Control System for Improving Speed Response of Five-Phase Induction Motor (5상 유도전동기의 속도응답특성 개선을 위한 직접토크제어 시스템)

  • Kim, Min-Huei;Choi, Sung-Un
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • This paper propose a improved direct torque control(DTC) system for improving operation of five-phase squirrel-cage induction motor(IM). A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings and the produced back-electromotive force(EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents, there is necessary to controlled 3rd harmonic current. Also a DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter drive system. For presenting the superior performance of the proposed DTC, experimental results of speed control are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[hp] IM.

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.

Development of 3-Dimensional Pose Estimation Algorithm using Inertial Sensors for Humanoid Robot (관성 센서를 이용한 휴머노이드 로봇용 3축 자세 추정 알고리듬 개발)

  • Lee, Ah-Lam;Kim, Jung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, a small and effective attitude estimation system for a humanoid robot was developed. Four small inertial sensors were packed and used for inertial measurements(3D accelerometer and three 1D gyroscopes.) An effective 3D pose estimation algorithm for low cost DSP using an extended Kalman filter was developed and evaluated. The 3D pose estimation algorithm has a very simple structure composed by 3 modules of a linear acceleration estimator, an external acceleration detector and an pseudo-accelerometer output estimator. The algorithm also has an effective switching structure based on probability and simple feedback loop for the extended Kalman filter. A special test equipment using linear motor for the testing of the 3D pose sensor was developed and the experimental results showed its very fast convergence to real values and effective responses. Popular DSP of TMS320F2812 was used to calculate robot's 3D attitude and translated acceleration, and the whole system were packed in a small size for humanoids robots. The output of the 3D sensors(pitch, roll, 3D linear acceleration, and 3D angular rate) can be transmitted to a humanoid robot at 200Hz frequency.

A Vector Control System for Five-Phase Squirrel-Cage Induction Motor Considering Effects of 3rd Current Harmonics Component (제3 고조파 전류성분의 영향을 고려한 5상 농형 유도전동기의 벡터제어 시스템)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.206-213
    • /
    • 2012
  • This paper propose a improved speed control system for five-phase squirrel-cage induction motor(IM) considering effects of 3rd. harmonic current components with field oriented control(FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] induction motor.

An Accidental Position Detection Algorithm for High-Pressure Equipment using Microphone Array (Microphone Array를 이용한 고압설비의 고장위치인식 알고리즘)

  • Kim, Deuk-Kwon;Han, Sun-Sin;Ha, Hyun-Uk;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2300-2307
    • /
    • 2008
  • This study receives the noise transmitted in a constant audio frequency range through a microphone array in which the noise(like grease in a pan) occurs on the power supply line due to the troublesome partial discharge(arc). Then by going through a series of signal processing of removing noise, this study measures the distance and direction up to the noise caused by the troublesome partial discharge(arc) and monitors the result by displaying in the analog and digital method. After these, it determines the state of each size and judges the distance and direction of problematic part. When the signal sound transmitted by the signal source of bad insulator is received on each microphone, the signal comes only in the frequency range of 20 kHz by passing through the circuit of amplification and 6th low pass filter. Then, this signal is entered in a digital value of digital signal processing(TMS320F2812) through the 16-bit A/D conversion. By doing so, the sound distance, direction and coordinate of bad insulator can be detected by realizing the correlation method of detecting the arriving time difference occurring on each microphone and the algorithm of detecting maximum time difference.

A Study on Novel Hybrid Type Encoder Design for the Position Control with the High-resolution (고정도 위치제어용 Hybrid Type Encoder에 관한 연구)

  • Cho S. E.;Lee S. H.;Song S. G.;Park S. J.;Kwon S. J.;Kim C. U.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.87-94
    • /
    • 2005
  • This paper is about the compensation of phase angle error and amplitude difference in stationary 2 pole coordinates by the installation variation of sensor at low cost high resolution digital hybrid encoder. To solve the problem of amplitude difference at the existing hybrid encoder, we normalized the relative magnitude of the two analog signals. and also to solve the problem of installation variation when installed the sensor, we rotate the stationary 2 pole coordinates to compensate the location error of sensor. and we used and tested the QEP function and A/D port in DSP(TMS320F2812) to verify the mentioned proposed method.

Digital State Feedback Current Control using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • A digital state feedback control method for the current mode control of DC-DC converters is proposed in this paper. This approach can precisely achieve interleaved current sharing among the converter modules. As the controller design and system analysis are performed in the time domain, the proposed method can easily satisfy the required converter specification by using the pole placement technique. The digital state feedback controller in the continuous and discrete time domain is derived for the robust tracking control. For the verification of the proposed control scheme, a parallel module bi-directional converter in a prototype 42V/14V hybrid automotive power system, which is a design example in the continuous time domain, and a parallel module buck converter, which is a design example in the discrete time domain, are implemented using a TMS320F2812 digital signal processor (DSP).

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

Design of PM Motor Drive Course and DSP Based Robot Traction System Laboratory

  • Yousfi, Driss;Belkouch, Said;Ouahman, Abdellah Ait;Grenier, Damien;Dehez, Bruno;Richard, Eric
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.647-659
    • /
    • 2010
  • This paper presents a part of North Africa/Europe collaboration results in education to develop project-oriented courses in power electronics and motor drive field. The course aims to teach Permanent Magnet motor drives close to a real world project of significant size and depth so as to be motivational, namely mobile robot project. Particular skills, student will acquire, are those relative to the detailed design and implementation of PM motor controllers in DSP based rapid prototyping environment. Simulation work is completed using graphical modeling tools in Simulink/Plecs, while real-time implementation is achieved by means of eZdspF2812 board and Simulink/TI C2000 Embedded Target tools. This flexible development environment fit the robot traction system very well and provides exactly the functionality necessary for an efficient PM motor drives teaching as demonstrated by a set of simulation and experiments.