• Title/Summary/Keyword: F-T synthesis

Search Result 101, Processing Time 0.028 seconds

GTL(Gas-to-Liquid) 기술 현황

  • Jun, Gi-Won
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • In recent years, the technologies for the production of synthetic fuel from natural gas have been attracting considerable interest because of high oil prices. While oil prices remaining high, GTL (Gas-to-Liquids) technology would provide an attractive option for utilizing gas resources. Furthermore, GTL fuels contain almost zero sulfur and low aromatics and have a very high cetane so that they are estimated to be environmentally friendly diesel fuels able of meeting the advanced fuel specifications of the 21st century. GTL process generally consists of three primary steps: synthesis gas production from natural gas reforming, hydrocarbon production from synthesis gas by Fischer-Tropsch (F-T) synthesis, product upgrading by hydrocracking/hydroisomerization. This paper presents a brief summary of GTL technology and worldwide development trend about it focusing on the reforming of natural gas and the F-T synthesis.

Efficiency of ATP Synthesis and Impairment of Glucose Tolerance in the NIDDM-Prone Rat

  • Kim, Sook-Bae
    • Journal of Nutrition and Health
    • /
    • v.30 no.4
    • /
    • pp.379-385
    • /
    • 1997
  • This study was designed to determine whether genetic defects in the efficiency of ATP synthesis existed in the NIDDM-prone BHE/cdb rat and to determine whether these defects caused the development of glucose intolerance. Thyroxine treatment provided an excellent clue as to the nature of the genetic defects in this rat. The characteristics of hyperhyroid and control Sprague-Dawley(SD) and BHE/cdb rats were studied. Hyperthyroidism was induced through the addition of thyroxine($T_4$) to the diet(2mg/kg of diet). Active proton conductances and passive proton conductances were tested. Mitochondria from hyperhyroid BHE/cdb rats were less efficient iii active proton conductances than mitochondria from hyperhyroid SD rats. It showed that decreased efficiency of ATP synthesis in the BHE/cdb rat was probably related to defects in active proton conductance, Indicating aberrant FoATPase. The levels of $F_1F_0$ATPaseATPase activity were tested. Mitochondria from hyperthyroid BHE/cdb rats were less active than mitochondria from hyperthyroid SD rats. This may be an attribute of aberrant F$_1$ATPase and may contribute to the BHE/cdb strain s characteristic of reduced ATP synthesis efficiency. Glucose tolerances were tested. BHE/cdb rats were profoundly affected by thyroxine, whereas SD rats were less so. It showed that the diabetes phenotype in BHE/cdb rats was related to defects in thyroxine-induced uncoupling. These results showed the decreased efficiency of ATP synthesis due to genetic defects in $F_1F_0$ATPase had relevance to the characteristic of impaired glucose tolerance in the NIDDM-prone BHE/cdb rat.

  • PDF

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Synthesis and Characterization of a Strontium Iron Fluoride Hydrated, Sr2Fe2F10(H2O)

  • Kim, Sun Woo
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.101-104
    • /
    • 2019
  • A hydrated strontium iron fluoride, Sr2Fe2F10(H2O) has been synthesized and characterized. The material was synthesized through mild hydrothermal reaction using an aqueous CF3COOH solution. The material exhibits a one-dimensional structure consisting of chains of corner-shared Fe3+F6 octahedra, isolated Fe3+F5(H2O) octahedra, chains of SrF10 polyhedra and isolated SrF8 polyhedra, respectively. Magnetic property measurements on Sr2Fe2F10(H2O) reveals an antiferromagnetic order at TN of ~2.5 K with a Weiss temperature (θ) of -61.51 K.

A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures (다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구)

  • Jihyun Son;Gyuhan Bae;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Characteristic of Inverse wavelet transform and Multi bank system (연속 웨이브렛 역변환의 특성 및 멀티 뱅크 시스템)

  • Kim Tae-hyung;Yoon Dong-han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.229-236
    • /
    • 2005
  • This paper is contribute to Inverse continuous wavelets transform(ICWT) which permits to determine real 'time-scale' plan. The application of ICWT is not yet represented because of the numerical difficulty. If the signal can be reconstructed stably by ICWT, the multi scale filter bank system which composed by analysis and synthesis process can be designed. In this work, we represent the ICWT which leads to nearly perfect reconstruction of signal and the multi-scale filter bank system.

Development of Radiosynthetic Methods of 18F-THK5351 for tau PET Imaging (타우 PET영상을 위한 18F-THK5351의 표지방법 개발)

  • Park, Jun-Young;Son, Jeong-Min;Chun, Joong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2018
  • Purpose $^{18}F-THK5351$ is the newly developed PET probe for tau imaging in alzheimer's disease. The purpose of study was to establish the automated production of $^{18}F-THK5351$ on a commercial module. Materials and Methods Two different approaches were evaluated for the synthesis of $^{18}F-THK5351$. The first approach (method I) included the nucleophilic $^{18}F$-fluorination of the tosylate precursor, subsequently followed by pre-HPLC purification of crude reaction mixture with SPE cartridge. In the second approach (method II), the crude reaction mixture was directly introduced to a semi-preparative HPLC without SPE purification. The radiosynthesis of $^{18}F-THK5351$ was performed on a commercial GE $TRACERlab^{TM}$ $FX-_{FN}$ module. Quality control of $^{18}F-THK5351$ was carried out to meet the criteria guidelined in USP for PET radiopharmaceuticals. Results The overall radiochemical yield of method I was $23.8{\pm}1.9%$ (n=4) as the decay-corrected yield (end of synthesis, EOS) and the total synthesis time was $75{\pm}3min$. The radiochemical yield of method II was $31.9{\pm}6.7%$ (decay-corrected, n=10) and the total preparation time was $70{\pm}2min$. The radiochemical purity was>98%. Conclusion This study shows that method II provides higher radiochemical yield and shorter production time compared to the pre-SPE purification described in method I. The $^{18}F-THK5351$ synthesis by method II will be ideal for routine clinical application, considering short physical half-life of fluorine-18 ($t_{1/2}=110min$).

Synthesis and Biological Evaluation as a Potential Allylamine Type Antimycotics (알릴아민 항진균제의 합성과 생물학적 평가)

  • 정병호;조원제;천승훈;정순영;유진철
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.293-299
    • /
    • 2003
  • Structure-activity relationship studies of allylamine type of antimycotics were carried out to evaluate the effect of naphthyl and methyl portion of naftifine. Compounds with 4-fluorophenyl(2a-5a), 2-fluorophenyl(2b-5b), 2,4-dichlorophenyl(2c-5c), 2,6-dichlorophenyl(2d-5d), 4-nitrophenyl(2e-5e), and 2,3-dihydro-benzo[1,4]dioxan-6-yl( 2f-5f) instead of naphthyl group with hydrogen(3a-3f), methyl(4a-4f), and ethyl(5a-5f) in the place of methyl in naftifine were synthesized and tested their in vitro anti-fungal activity against five different fungi. Eight compounds(3a, 5a, 3c, 4c, 4d, 5d, 5e, and 4f) showed significant antifungal activity against T. mentagrophytes. (E)-N-Ethyl-(3-phenyl-2-propenyl)-4-nitro-benzenemethaneamine(5e) displayed moderate antifungal activity against all five different fungi.