• Title/Summary/Keyword: Eye Image

Search Result 823, Processing Time 0.024 seconds

Computer Image Processing for AR Conceptional Display 3D Navigational Information (증강현실 개념의 항행정보 가시화를 위한 영상처리 기술)

  • Lee, Jung-Min;Lee, Kyung-Ho;Kim, Dae-Soek;Nam, Byeong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.245-246
    • /
    • 2014
  • This paper suggests the navigation information display system which is based on augmented reality technology and especially focuses on image analysis technology. Navigator has to always confirm the information from marine electronic navigation devices and then they compare with the view of outside targets of the windows. During this 'head down' posture, they feel uncomfortable and sometimes it cause near-accidents such as collision or missing objects, because he or she cannot keep an eye on the front view of windows. Augmented reality can display both of information of virtual and real in a single display. Therefore we tried to adapt the AR technology to help navigators and have been studied and developed image pre-processing module as a previous research already. To analysis the outside view of the bridge window, we have extracted navigational information from the camera image by using image processing. This paper mainly describes about recognizing ship feature by haar-like feature and filtering region of interest area by AIS data, which are to improve accuracy of the image analysis.

  • PDF

Unconscious Response Characteristics of Pupils in the Observation toward to Spatial Image (공간이미지를 향한 주시에 나타난 동공의 무의식적 반응 특성)

  • Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.3
    • /
    • pp.136-144
    • /
    • 2018
  • The purpose of this study is to examined the unconscious response of the pupil in the observation toward the image in the eye-tracking experiments that target on a large complex cultural space. Twenty-five men participated in this experiment and the observation data were analyzed in seconds per minute on watching time. It could examine the unconscious response of information searching in the change of pupil size in the process of observing the space. The results could be defined as following several points. First, it was possible to outline the unconscious response characteristics of pupil by analyzing sudden changes in pupil size as total, cumulative, and individual. The response characteristics using frequency and time can be utilized as the analytical method to examine the degree of interest of spatial components according to the purpose of analysis in the future. Second, according to the over ${\pm}5%$ of cumulative variation rate on the pupil size change, during in the 60 seconds, the continuous pupil dilation was used 25.2 seconds in 8.8 rounds and the pupil reduction was used 18.0 seconds in 7.0 rounds. Third, when the variation rate of ${\pm}5%$ or more was regarded as the sudden changes on pupil size by individual variation, the pupil dilation was 7.2 rounds of 8.6 seconds and pupil reduction was 6.0 seconds in 5.0 rounds. This means that the pupil increases 9.3% in one expansion and decreases -8.5% in the reduction process. As regarding pupil changes as cumulative rate, it appeared high change rate on pupil reduction but it became higher on pupil dilation in individual.

A Novel Circle Detection Algorithm for Iris Segmentation (홍채 영역 분할을 위한 새로운 원 검출 알고리즘)

  • Yoon, Woong-Bae;Kim, Tae-Yun;Oh, Ji-Eun;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1385-1392
    • /
    • 2013
  • There is a variety of researches about recognition system using biometric data these days. In this study, we propose a new algorithm, uses simultaneous equation that made of the edge of objects, to segment an iris region without threshold values from an anterior eye image. The algorithm attempts to find a center area through calculated outskirts information of an iris, and decides the area where the most points are accumulated. To verify the proposed algorithm, we conducted comparative experiments to Hough transform and Daugman's method, based on 50 images anterior eye images. It was found that proposed algorithm is 5 and 75 times faster than on each algorithm, and showed high accuracy of detecting a center point (95.36%) more than Hough transform (92.43%). In foreseeable future, this study is expected to useful application in diverse department of human's life, such as, identification system using an iris, diagnosis a disease using an anterior image.

Fisheye Image Correction with Ellipsoid Model (타원체 모형을 통한 어안 영상 보정)

  • Kim, Hyun-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • General method for correcting the distortion caused by the characteristic of the fish-eye lens may be classified in two ways. The first method is a calibration method using a mathematical model taking into account the characteristics of the lens, the second method is a method using only the distortion correction image, regardless of the lens. When considering the characteristics of the lens, calibration equation can be calculated geometrically from the relationship between the three-dimensional real-world coordinates and two-dimensional image coordinates and the parameters of lens. However, it is not suitable for ellipsoid type lens, because of existing research papers have been corrected on the spherical-type fisheye lens. In this paper, we propose a method for correcting geometrically using fish-eye lens as an ellipsoid model. Through a calibration picture, it can be seen that the proposed method is valid.

A Study of Facial Organs Classification System Based on Fusion of CNN Features and Haar-CNN Features

  • Hao, Biao;Lim, Hye-Youn;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.105-113
    • /
    • 2018
  • In this paper, we proposed a method for effective classification of eye, nose, and mouth of human face. Most recent image classification uses Convolutional Neural Network(CNN). However, the features extracted by CNN are not sufficient and the classification effect is not too high. We proposed a new algorithm to improve the classification effect. The proposed method can be roughly divided into three parts. First, the Haar feature extraction algorithm is used to construct the eye, nose, and mouth dataset of face. The second, the model extracts CNN features of image using AlexNet. Finally, Haar-CNN features are extracted by performing convolution after Haar feature extraction. After that, CNN features and Haar-CNN features are fused and classify images using softmax. Recognition rate using mixed features could be increased about 4% than CNN feature. Experiments have demonstrated the performance of the proposed algorithm.

Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model

  • Liu, Yan;Lv, Bingxue;Wang, Jingwen;Huang, Wei;Qiu, Tiantian;Chen, Yunzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1814-1828
    • /
    • 2021
  • Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.

Dynamic tracking control of robot manipulators using vision system (비전 시스템을 이용한 로봇 머니퓰레이터의 동력학 추적 제어)

  • 한웅기;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1816-1819
    • /
    • 1997
  • Using the vision system, robotic tasks in unstructured environments can be accompished, which reduces greatly the cost and steup time for the robotic system to fit to he well-defined and structured working environments. This paper proposes a dynamic control scheme for robot manipulator with eye-in-hand camera configuration. To perfom the tasks defined in the image plane, the camera motion Jacobian (image Jacobian) matrix is used to transform the camera motion to the objection position change. In addition, the dynamic learning controller is designed to improve the tracking performance of robotic system. the proposed control scheme is implemented for tasks of tracking moving objects and shown to outperform the conventional visual servo system in convergence and robustness to parameter uncertainty, disturbances, low sampling rate, etc.

  • PDF

Automatic Safety Inspection Technique for Ammunition Fuzes using Radiographic Images (방사선 영상을 이용한 탄약신관 안전상태 자동인식기술 개발)

  • An, Ji Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.283-292
    • /
    • 2015
  • This paper presents the development of the automatic safety inspection technique for the ammunition fuzes using radiography images. The technique inspects 49-ammunition fuze by detecting the X-ray or neutron radiographic images to check whether the fuze is unintendedly armed or/and some major assembled parts are at right place. To execute the program, we loads the image(s) for under test. After reading images, the program conducts a series of pre-image processing, and then starts inspecting input images by using the detection algorithms which are designed distinctively for each fuze. After completing the detection process, the program displays the final result of the fuze status: "safety or danger." Through this program, we can cut off the fuzes which have any doubt about safety, and can only provide absolutely safe fuzes, compared with the current naked eye inspection method.

A Study on Face Region Extraction Using Domain Division (영역 분할을 이용한 얼굴 영역 추출방법에 관한 연구)

  • 김규식;채덕재;이상범
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.12
    • /
    • pp.1669-1678
    • /
    • 2002
  • Symmetry region searching can extract face region without a prior information in an image by using symmetric. However, this method requires a plenty of the computation time because the mask size to process symmetry region searching must be larger than the size of object such as eye, nose and mouth in face. In this paper, we proposed symmetric by using symmetry region searching in the reduced image to reduce computation time of symmetry region searching. It was applied to this method in an original image. To extract exact face region, we also experimented face region searching by using domain division in extraction legion.

  • PDF

Development of High Speed Synchronous Control System for Real Time 3D Eye Imaging Equipment (망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • 고종선;김영일;이용재;이태훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the travelling difference. This method requires exact synchronous control of laser travelling in optic system to show a clear 3-dimensional image of retina. To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, a very simple mathematical model of the galvanometer is approved by experimental result.