• Title/Summary/Keyword: Extrusion Work

Search Result 111, Processing Time 0.022 seconds

The Establishment of Work Conditions in Plastic Extrusion Process by using Multiple Linear Regression Analysis (중회귀분석을 이용한 플라스틱 압출공정의 작업조건 설정 방법)

  • 김태호;김석중;강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.35-42
    • /
    • 1995
  • In the plastic extrusion process, product quality is influenced by work condition for temperature of cylinders and dies. The work conditions are various, so it is difficult to standardization of the work conditions. Therefore, the work conditions are depended on the workers of experience and skill. In the plastic extrusion process, it has five control heating points on the cylinder and three control heating points on the die. In addition, there is one control point on the extrusion process. It is extrusion speed. In this case, we don't know how these affect product quality. We structure the multiple linear regression equation with the temperature of cylinders and dies as independent variables and the product weight as dependent variable. We solve this equation using statistic computer package named Juse-Qcas.

  • PDF

Exposure Assessment for Volatile Organic Compounds Generated through Extruding Work with Nylon 66 Resin (Nylon 66 수지의 압출 작업시 발생하는 휘발성유기화합물에 대한 노출평가)

  • Park, Seung-Hyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.256-262
    • /
    • 2014
  • Objectives: The purpose of this study was to identify the major volatile organic compounds generated during extrusion work with nylon 66 resin and evaluate causes of discomfort among extrusion workers. Methods: A thermal decomposition experiment using nylon 66 resin collected at a worksite was conducted in the laboratory. Based on hazards identified through the thermal decomposition experiment, the exposure levels of the workers were evaluated. Results: The major decomposition products were formaldehyde, acetaldehyde, aniline, cyclopentanone and diphenyl amine. These materials were identical to those sampled in the extrusion booth. The sources of the annoying smells, about which the workers had complained, were formaldehyde, aniline, diphenyl amine, and other hazards in the vapor and fine particles produced by the extrusion work. Formaldehyde, acetaldehyde, and aniline were detected from air samples among workers involved in extrusion work. However, the concentration levels were much lower than Korean occupational exposure limits. The average concentration levels of formaldehyde, acetaldehyde, and aniline were 0.0120 ppm, 0.0036 ppm and 0.0006 ppm, respectively. Conclusions: The extrusion process at around $300^{\circ}C$ thermally decomposes the nylon 66 resin, emitting formaldehyde, aniline, and other hazards, which might have made workers uncomfortable due to their smells. The workers exposure levels to volatile organic compounds were far lower than Korean occupational exposure limits. However, since formaldehyde is a human carcinogen and acetaldehyde and aniline are also confirmed animal carcinogens, it is recommended that exposure levels should be maintained at a minimum level.

A Study of the Twisting and Extrusion Process of the Product with Involute Helical Fin from the Round Billet by the Upper Bound Analysis (상계해법에 의한 원형빌렛으로부터 인볼루트 헬리컬핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 박대윤;진인태
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.302-310
    • /
    • 2001
  • The twisting and extrusion process of the product with involute helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted inclined die surface connecting the die enterance section and the die exit section linearly. In the analysis, the internal shear surface is defined as the curved twisted plane from the twisting of die surface and the shear work is calculated by the consumption of shear energy. The increase rate of angular velocity is determined by the minimization of plastic work. The angular velocity of die exit can be controlled by the land length and the length of inclined die. The alular velocity assums to be increased linearly by the axial distance from the die enterance to the die exit. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction constant.

  • PDF

A Study of the Twisting and Extrusion Process of the Product with Involute Helical Fin from the Round Billet (원형빌렛으로부터 인볼루트 헬리컬 핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 김한봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.111-114
    • /
    • 1999
  • The twisting and extrusion process of the product with involute helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the internal shear surface is defined as the curved twisted plane from the taisting of die surface and the shear work is calculated by the consumption of shear energy The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF

A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of a Hot Square Die Extrusion with Flow Guide (플로우가이드를 고려한 평금형 열간 압출의 3차원 강-점소성 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.138-144
    • /
    • 1996
  • In square die extrusion, flow guide and ide land play important roles for controlling the metal flow in die design. In the present work, the flow guide and the die land are considered for the die construction. Based on ALE description , rigid-viscoplastic finite element analysid is carried out to assess the effects of process and die design parameters. The thermal state affects greatly the product quality in hot extrusion. in the present work, the temperature distribution is also analyzed in theframwork of rigid-viscoplastic finite element computation. As a computational example, hot square die extrusion with flow guide and die land has been analyzed for the profile of a H section.

  • PDF

Thixo Extrusion and Reheating Characteristics of Semi Solid A356 Alloy (반응고 A356 합금의 재가열 특성 및 반용융 압출)

  • Kim, Dae-Hwan;Jung, Hyun-Ju;Shim, Sung-Yong;Lim, Su-Gun;Lee, Sang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • This work presents the results of a thixo-extrusion process applied to aluminum alloy and and reheating characteristics of semi-solid A356 Alloy using have been discussed. The reheating experiment was performed using an electric resistance furnace and multi-stage heating for uniform reheating. The thixo-extrusion was performed at the optimal reheating conditions of the semi-solid A356 alloy, the the extrusion conditions were an extrusion ratio of 33 and ram speed of 6 mm/sec. The results showed that the thixo-extrusion of semi-solid A356 alloy fabricated by the cooling slope reduced the extrusion pressure by 180% in comparison with hot extrusion, and that a sound extrusion could be obtained in spite of the same extrusion ratio and strain rate.

The Characteristic of a Hydrostatic Extrusion of Magnesium Alloy(AZ31) (Mg 합금(AZ31)의 열간 정수압 압출 특성에 관한 연구(I))

  • Yoon D. J.;Seo Y. W.;Jeong H. G.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.128-131
    • /
    • 2004
  • Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. Magnesium alloy has some good characteristics, EMI shielding property and high specific strength. Nevertheless their high brittleness make it uneasy to process the magnesium. Magnesium alloys are extruded like aluminium alloys. The present work was done to find a characteristic of magnesium alloy(AZ31) changing the extrusion ratio 8.5, 19.1, 49 respectly and changing the die half angle $30^{\circ},\;45^{\circ},\;60^{\circ}$. Here this present done by the hydrostatic extrusion in the hot condition, $310^{\circ}$. The higher the extrusion ratio goes, the higher the extrusion force goes.

  • PDF

A Study on the Plastic Flow of Axisymmetric Forward Extrusion of Tubes Using Upper-Bound Analysis (上界解法에 의한 軸對稱 管의 前方押出時 塑性流動 硏究)

  • 한철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1314-1321
    • /
    • 1992
  • In analyzing the plastic flow of axisymmetric tube extrusion a new method of formulation using the stream function approach and upper-bound theorem is proposed which permits the prediction of plastically deformed zone in analytic expression as well as metal flow. It is shown that the formulation proposed in this work covers the solid extrusion and tube extrusion in axisymmetric case. The effect of some process parameters such as area reduction, the ratio of radii(inner radius to outer radius) and friction factor on extrusion pressure, deformation zone and plastic flow through stream-lined dies has been studied. The presented theoretical analysis can be effectively used for the prediction of deformation zone and plastic flow.

A Study on the Numerical Friction Model for Extrusion (압출성형을 위한 마찰수식 모델에 관한 연구)

  • Oh P. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.14-20
    • /
    • 2005
  • To carry out perfectly the forming analysis of the extruding products, it is necessary that the friction boundary condition between dies and blanks should be worked out the accurate numerical friction models. But, the existing numerical models of the extrusion may be large different from the actual conditions. In this study, accurate analysis of the extrusion forming for the variation of pressure and velocity should be subjected. It is to develop the accuracy of the numerical friction models and potentialize to apply for the high speed forming work in the extrusion. Therefore, the results should improve the accuracy, cause the energy saving for the extrusion and finally expand the applying areas of the results.

Three-Dimensional Finite Element Analysis for Extrusion of the Underframe of a Railroad Vehicle (철도차량 마루부재 압출공정의 3 차원 유한요소해석)

  • Park K.;Lee Y. K.;Yang D. Y.;Lee D. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.5-8
    • /
    • 1999
  • The present work is concerned with three-dimensional finite element analysis of the hollow section extrusion process using a porthole die. For economic computation, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented. The proposed method improves the computational efficiency significantly, especially fur the three-dimensional analysis of extrusion problems. As a numerical example, extrusion of the underframe part of a railroad vehicle are analyzed. For three-dimensional mesh generation of a complicated shape with hexahedral elements, a modified grid-based approach with the surface element layer is utilized. The analysis results are then successfully reflected on the industrial porthole die design.

  • PDF