• Title/Summary/Keyword: Extrusion Molding

Search Result 57, Processing Time 0.03 seconds

Mechanical Properties of Corn Husk Flour/PP Bio-composites

  • Jagadeesh, Dani.;Sudhakara, P.;Lee, D.W.;Kim, H.S.;Kim, B.S.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • The focus in the present work is to study the agro-waste corn husk bio-filler as reinforcement for polypropylene. These materials have been created by extrusion and injection molding. The effect of filler content by 10, 20, 30 and 40 wt. % and mesh sizes of 50~100, 100 and 300 on the mechanical properties was studied. For the un-notched specimens, the results of flexural strength showed a declining trend with increase the filler loading and the results of impact strength showed an increasing trend with increase the mesh size. In contrast, enhanced flexural modulus was observed with increasing filler loading and size.

On the Surface Defect Analysis of an Aluminum Tube for an OPC Drum using n SEM and EDX (SEM/EDX를 이용한 OPC 드럼용 Al 튜브의 표면결함 분석에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.143-148
    • /
    • 2007
  • The surface defects of an aluminum tube for an OPC drum have been analyzed using a scanning microscopy(SEM) and an energy dispersive X-ray analyze.(EDX). The SEM/EDX system, which may provide good information on the surface defects and their distributions, provides an optical diameter of an impurity and a chemical composition. These are strongly related on the coated film thickness and quality of an OPC drum, which is a key element of a toner cartridge for a laser printer. The experimental results show that the local deformations, scratch wear, and flaws are produce the non-uniform coating layers, which may be removed by a manufacturing process of an aluminum tube. The major parameters on the coating quality of an OPC drum are the impurities of an aluminum tube such as silicon, oxygen, calcium, carbon, sulphur, chlorine, and others. These impurities may be removed by an ingot molding, extrusion and drawing, quality control, and packing processes with a strict manufacturing technology.

Effect of the $CO_2$ on Viscosity Change in Continuous Microcellular Foaming Processing (초미세 발포 연속공정을 위한 $CO_2$ 사용이 재료의 점도변화에 미치는 영향)

  • 문용락;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1394-1397
    • /
    • 2003
  • The first thing in developing injection molding and extrusion with microcellular foaming process is to get a grip on one phase state's rheology of gas and polymer solution. Understanding rheology is essential to design mold or die. and it is so important to control the condition of process. Also, this data is got the utmost out of simulation carrying out. In this paper, we will see the measurement of rheology in one phase that mixed polypropylene which contains talc with carbon dioxide of super critical fluid state, and will compare its result with the simulation result.

  • PDF

Flame Retardancy & Mechanical Properties of Mixed Waste $Plastic/Mg(OH)_{2}$ Composites Reinforced with PUB Powder (PUB 분말이 충전된 혼합폐플라스틱/$Mg(OH)_{2}$ 복합소재의 난연성 및 기계적 특성)

  • Jung, Ki-Chang;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.65-71
    • /
    • 2006
  • Flame retardancy and mechanical properties of polyolefinic mixed waste plastics/filler composites were investigated by using inorganic flame retardant(magnesium hydroxide) and PUB(polyurethane block) powder generated from cryogenic insulation process. All composites were obtained by extrusion and after compression molding. The effect of PUB powder on the properties of the composites was studied by tensile and izod impact test, morphology studies and flammability as LOI and UL94 vertical burning test and smoke density. The objective of this work is to obtain good mechanical properties from recycled PP composites with $Mg(OH)_{2}/PUB$ powder as fillers and optimum cost-performance balance, in addition to flame retardant characteristics.

Study on Characteristics and Manufacture of Heat-Resisting Diatomite Protection Tube for Probe Used in Steelmaking Process (용융금속 프로브용 규조토 내열보호관의 제조 및 특성연구)

  • Lee, Man-Eob;Chung, Hak-Jae;Lee, Kyo-Woon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.260-268
    • /
    • 2005
  • A heat-resisting diatomite protection tube, using diatomite as a main component, was manufactured through an extrusion molding of ceramic slurry in different component ratios. And its mechanical strength, carbon analysis and microstructural non-homogeneity were investigated. After fixing $60wt\%$ of porous diatomite whose particle size was $50\~100\;{\mu}m$, the optimum mixture ratio with composition variables by changing $1\;wt\%$ of each component that was silica sol$(4.3\~7.3\;wt\%)$ as an inorganic binder, CMC (Sodium CarboxyMethyl Cellulose $(6\~9\;wt\%)$) as an organic binder and paper powder$(4.7\~7.7\;wt\%)$ was obtained. As a result of the investigation on a composition containing $60\;wt\%$ diatomite, $5.3\;wt\%$ silica sol, and $7\;wt\%$ CMC, a heat-resisting protection tube that could be used as a molten steel probe for measuring the temperature and components of molten steel was developed. The bending strength, compressive strength, and elastic modulus of the protection tube developed, that contained $\le2.3\;wt\%$ carbon, were 7.1 MPa, 7.5 MPa, and 1090 MPa, respectively.

An Experimental Study on the Mechanical and Durability Properties of Ductile Cement Panel Used Vacuum Extrusion Molding (진공압출성형 고인성 시멘트 패널의 역학 및 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Lee, Jong-Suk;Han, Byung-Chan;Kwon, Young-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.473-476
    • /
    • 2008
  • Due to the pursuit of high function and international price increase in the field of construction, the application of the secondary product using cement is on the increase gradually in the construction industry in the pursuit of economic cost reduction by the shortening of the construction time like Expediting and the dry construction method at the same time. However, it is in very urgent situation of measures to improve the structural performance or durable performance because it is limited for use in terms of panel in interior exterior building or functional repair reinforce as yet. Accordingly, this study is to investigate applicability of permanent Formwork like mould with the structural performance or excellent durable performance in the field of construction, and to derive optimum mixture in the performance and quality of manufacture. As a result of analysis comparison with the dynamic and durable properties of vacuum extrusion molding high toughness cement panel according to the mixture of four conditions, this study has found that the test body of mixing ECC-DP3 using small filler and large granulated blast furnace slag and powder flame retardant had excellent relative hardness and bending stress strain. The durable performance has shown excellent tendency by the decrease of porosity and enhancement of water-tightness.

  • PDF

A Study on the Detoxification of Chrysotile and the use of High-density Extruded Cement Panel Reinforcement Fibers (백석면의 무해 섬유화 처리 방법과 고밀도 압출성형 패널 활용 연구)

  • Jang, Kyong-Pil;Kim, Tae-Hyoung;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.223-228
    • /
    • 2021
  • The final disposal method for asbestos building materials is to be landfilled at a designated waste landfill in accordance with the Waste Management Act. However, it is difficult to secure a domestic designated waste landfill site to landfill the entire amount of asbestos waste, which is expected to emit more than 400,000 ton/year by 2044. In this study, a detoxification treatment was performed on a ceiling tex with a density of 1.0 to 1.2g/cm3 containing 3 to 7% of chrysotile, and it was used as a reinforcing fiber for extruded panels. It was confirmed that asbestos components were detoxified through the reaction process using 30% oxalic acid and carbon dioxide, and it was recognized that these detoxifying properties were maintained even after extrusion molding. However, it was found that milling to a fiber size of less than 1mm for complete detoxification of asbestos resulted in a decrease in reinforcing performance. Therefore, in the case of using detoxified asbestos fibers in the extrusion molding process, it is considered desirable to add fibers with a length of 5mm or more to improve the reinforcing performance.

Modification of Linear Polyphenylene Sulfide with Functional Elastomers and Its Properties (기능성 엘라스토머를 이용한 선형 폴리페닐렌 설파이드의 개질 및 그 특성)

  • Kim, Sungki;Hong, In-Kwon;Lee, Sangmook
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.399-404
    • /
    • 2013
  • In order to develop the blends with good long-term thermal stability and tensile elongation, the blends of polyphenylene sulfide (PPS) and 7 kinds of elastomer were tested. PPS/elastomer (90/10, 80/20, 70/30) blend samples were prepared by compression molding after twin screw extrusion or punching after sheet extrusion. Rheological, mechanical property and morphology of the blends were analyzed by capillary rheometer, UTM, impact tester, and SEM. For long-term thermal stability tests, the mechanical properties were measured again after the samples were stored in a convection oven for a week. The tensile strengths were almost same regardless of kinds of elastomer and the tensile elongation was the maximum for the PPS/m-EVA blend. As the content of elastomer increased, the elongation increased but delamination occurred at 30 wt% of elastomer content. The tensile strength increased but the elongation decreased seriously after thermal aging. Many problems related with PPS processing could be solved by adding a small amount of the elastomers partially compatibile with PPS and it would be applicable to develop various PPS grades.

A Study on the Effect of CNT on Crystallization Kinetics and Hydrolytic Degradation of PKA/CNT Composite (PLA/CNT 복합재료의 결정화 특성 및 가수분해에 미치는 CNT 영향에 대한 연구)

  • Li, Mei-Xian;Kim, Sung-Ha;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.5-10
    • /
    • 2011
  • As environmental pollution getting worse, biodegradable materials have been drawn more attention than ever. In this study, polylactic acid (PLA)/carbon nanotubc (CNT) nanocomposites were manufactured via extrusion molding and injection molding, In order to change the crystallinity, annealing treatment was done for different time span, Crystallization kinetics of PLA was analyzed by differential scanning calorimeter (DSC), and it was confirmed that a proper amount of CNT can increase the crystallization rate of PLA. In addition, the presence of CNT significantly accelerates the hydrolytic degradation rate of PLA, however, it decreases with the increase of crystallinity. The reason is that degradation may occur in the PLA/CNT interface easily, and the molecular structure of the composite becomes dense with the increase of crystallinity.

A Study on Development of the Flask-Molds for Manufacturing of the Elbow Shape Shell Molds (엘보어 쉘주형 금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Park, Jong-yeon
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • Since the shell-molds are used to make casting the metal parts for the automobile industry, the quality may well be inconsistent with the lower productivity, increasing the cost of the end products. The primary elbow design shell molded steel castings being produced through extrusion process has $180^{\varnothing}$ O.D., $150^{\varnothing}$ I.D., 14mm thickness and 400mm length, while being processed onto the left side of the tubing. The primary cause for the poor processing is the uneven manual shell molding. If the manual shell molds should be produced to have even quality, they would not be processed for tube linking. The purpose of this study was to develop the flask-molds for manufacturing of the shell molds to ensure mass-production, consistent quality, ommission of processing and comfortable working environment. For this purpose, four flask-molds were produced and thereby, four shell molds were assembled. In particular, the shell molds for processing were formed of the fine coated sand to be blown. As a result, productivity increased about three times, while a consistent quality was ensured. Furthermore, the tubes could be linked with each other without being processed, while pallets could be stacked, stored, transported and managed more easily. In a nut-shell, the molding theory could be applied more effectively. However, it is conceived that this study should be followed up by future studies which will research into reliability and endurability of the end products.

  • PDF