• Title/Summary/Keyword: Extreme-Pressure

Search Result 317, Processing Time 0.027 seconds

Finite Element Analysis of Carbon Fiber Composite Sandwich Panels Subjected to Wind Debris Impacts

  • Zhang, Bi;Shanker, Ajay
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.436-442
    • /
    • 2022
  • Hurricanes and tornadoes are the most destructive natural disasters in some central and southern states. Thus, storm shelters, which can provide emergency protections for low-rise building residents, are becoming popular nowadays. Both FEMA and ICC have published a series of manuals on storm shelter design. However, the authors found that the materials for related products in the market are heavyweight and hard to deliver and install; renovations are necessary. The authors' previous studies found that lightweight and high-performance composite materials can withstand extreme wind pressure, but some building codes are designated in wind-borne debris areas. In these areas, wind debris can reach greater than 100 mph speed. In addition, the impact damage on the composite materials is an increasing safety issue in many engineering fields; some can cause catastrophic results. Therefore, studying composite structures subjected to wind debris impact is essential. The finite element models are set up using the software Abaqus 2.0 to conduct the simulations to observe the impact resistance behavior of the carbon fiber composite sandwich panels. The selected wood debris models meet the FEMA requirements. The outcome of this study is then employed in future lab tests and compared with other material models.

  • PDF

A GMOS/IFU Study of Enhanced Star Formation Activity of Jellyfish Galaxies in Massive Galaxy Clusters

  • Lee, Jeong Hwan;Lee, Myung Gyoon;Kang, Jisu;Cho, Brian S.;Mun, Jae Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2021
  • Ram-pressure stripping (RPS) is known as a typical mechanism of quenching star formation (SF) of galaxies orbiting in clusters, but it can also boost the SF activity within a short period of time. Jellyfish galaxies, with eye-catching blue tails and knots, are such starburst galaxies undergoing strong RPS in galaxy clusters. Thus, they are very useful targets to understand their SF activity in relation to RPS. We study the SF activity of three jellyfish galaxies in massive clusters at z=0.3-0.4 (MACSJ1752-JFG2, MACSJ0916-JFG1, and A2744-F0083) with Gemini GMOS/IFU and compare our results to those of jellyfish galaxies in low-mass clusters. We obtain total star formation rates (SFRs) of up to 60 Mo/yr and SFRs in the tails of up to 15 Mo/yr, which are much higher than those of jellyfish galaxies in low-mass clusters with the median SFRs of 1.1 Mo/yr in total and 0.03 Mo/yr in tails. In addition, these SFRs are also significantly higher than the SF main sequence of galaxies at the redshifts of the three jellyfish galaxies. This implies that their SF activity is much more enhanced compared to jellyfish galaxies in low-mass clusters due to extreme RPS in massive clusters.

  • PDF

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

Classification of Atmospheric Vertical Environment Associated with Heavy Rainfall using Long-Term Radiosonde Observational Data, 1997~2013 (장기간(1997~2013) 라디오존데 관측 자료를 활용한 집중호우 시 연직대기환경 유형 분류)

  • Jung, Sueng-Pil;In, So-Ra;Kim, Hyun-Wook;Sim, JaeKwan;Han, Sang-Ok;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.611-622
    • /
    • 2015
  • Heavy rainfall ($>30mm\;hr^{-1}$) over the Korean Peninsula is examined in order to understand thermo-dynamic characteristics of the atmosphere, using radiosonde observational data from seven upper-air observation stations during the last 17 years (1997~2013). A total of 82 heavy rainfall cases during the summer season (June-August) were selected for this study. The average values of thermo-dynamic indices of heavy rainfall events are Total Precipitable Water (TPW) = 60 mm, Convective Available Potential Energy (CAPE) = $850J\;kg^{-1}$, Convective Inhibition (CIN) = $15J\;kg^{-1}$, Storm Relative Helicity (SRH) = $160m^2s^{-2}$, and 0~3 km bulk wind shear = $5s^{-1}$. About 34% of the cases were associated with a Changma front; this pattern is more significant than other synoptic pressure patterns such as troughs (22%), migratory cyclones (15%), edges of high-pressure (12%), typhoons (11%), and low-pressure originating from Changma fronts (6%). The spatial distribution of thermo-dynamic conditions (CAPE and SRH) is similar to the range of thunderstorms over the United States, but extreme conditions (supercell thunderstorms and tornadoes) did not appear in the Korean Peninsula. Synoptic conditions, vertical buoyancy (CAPE, CIN), and wind parameters (SRH, shear) are shown to discriminate among the environments of the three types. The first type occurred with high CAPE and low wind shear by the edge of the high pressure pattern, but Second type is related to Changma front and typhoon, exhibiting low CAPE and high wind shear. The last type exhibited characteristics intermediate between the first and second types, such as moderate CAPE and wind shear near the migratory cyclone and trough.

Estimation of Extreme Wind Speeds in Korean Peninsula using Typhoon Monte Carlo Simulation (태풍 시뮬레이션을 통한 한반도 극한풍속 추정)

  • Lee, Sungsu;Kim, Ga Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • The long-span bridges such as Incheon Bridge and Seohae Grand Bridge are located on the coastal region effected frequently by strong wind of typhoons. In order to ensure the wind-resistant performance of the structure, estimation of the proper design wind speed is very important. In this study, stochastic estimation of design wind speed incurred by typhoons is carried out. For this purpose, we first established probability distribution of climatological parameters such as central pressure depth, distance of closest approach, translation speed and heading to build statistical model of typhoons, which are employed in Monte Carlo simulation for hypothetical typhoons. Once a typhoon is generated with statistically justified parameters, wind speeds are estimated along its path using wind field model. Thousands of typhoons are generated and their peak wind speeds are utilized to establish the extreme wind speeds for different return period. The results are compared with design basic wind speeds in Korean Highway Bridge Design Code, showing that the present results agree well with similar studies while the existing code suggests higher design wind speed.

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

A development of hierarchical bayesian model for changing point analysis at watershed scale (유역단위에서의 연강수량의 변동점 분석을 위한 계층적 Bayesian 분석기법 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Kim, Yoon-Hee;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.75-87
    • /
    • 2017
  • In recent decades, extreme events have been significantly increased over the Korean Peninsula due to climate variability and climate change. The potential changes in hydrologic cycle associated with the extreme events increase uncertainty in water resources planning and designing. For these reasons, a reliable changing point analysis is generally required to better understand regime changes in hydrologic time series at watershed scale. In this study, a hierarchical changing point analysis approach that can apply in a watershed scale is developed by combining the existing changing point analysis method and hierarchical Bayesian method. The proposed model was applied to the selected stations that have annual rainfall data longer than 40 years. The results showed that the proposed model can quantitatively detect the shift in precipitation in the middle of 1990s and identify the increase in annual precipitation compared to the several decades prior to the 1990s. Finally, we explored the changes in precipitation and sea level pressure in the context of large-scale climate anomalies using reanalysis data, for a given change point. It was concluded that the identified large-scale patterns were substantially different from each other.

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.