• Title/Summary/Keyword: Extreme value

Search Result 616, Processing Time 0.024 seconds

CHARACTERIZATION OF STANDARD EXTREME VALUE DISTRIBUTIONS USING RECORDS

  • Skrivankova, Valeria;Juhas, Matej
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.401-407
    • /
    • 2011
  • The paper deals with characterization of standard Gumbel distribution and standard $Fr{\acute{e}}chet$ distribution and was motivated by [4], where the Weibull distribution is characterized. We present criterions using the independence of some suitable functions of lower records in a sequence of independent identically distributed random variables $\{X_n,\;n{\geq}1\}$.

The Extreme Value Analysis of Deepwater Design Wave Height and Wind Velocity off the Southwest Coast (남서 해역 심해 설계 파고 및 풍속의 극치분석)

  • Kim, Kamg-Min;Lee, Joong-Woo;Lee, Hun;Yang, Sang-Yong;Jeong, Young-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.245-251
    • /
    • 2005
  • When we design coastal and harbol facilities deepwater design wave and wind speed are the important design parameters. Especially, the analysis of these informations is a vital step for the point of disaster prevention. In this study, we made and an extreme value analysis using a series of deep water significant wave data arranged in the 16 direction and supplied by KORDI real-time wave information system ,and the wind data gained from Wan-Do whether Station 1978-2003. The probability distributions considered in this characteristic analysis were the Weibull, the Gumbel, the Log-Pearson Type III, the Normal, the Lognormal, and the Gamma distribution. The parameter for each distribution was estimated by three methods, i.e. the method of moments, the maximum likelihood, and the method of probability weight moments. Furthermore, probability distributions for the extreme data had been selected by using Chi-square and Kolmogorov-Smirnov test within significant level of 5%, i,e. 95% reliance level. From this study we found that Gumbel distribution is the most proper model for the deep water design wave height off the southwest coast of Korea. However the result shows that the proper distribution made for the selected site is varied in each extreme data set.

  • PDF

Development of a Probabilistic Approach to Predict Motion Characteristics of a Ship under Wind Loads (풍하중을 고려한 확률론적 운동특성 평가기법 개발에 관한 연구)

  • Sang-Eui Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.315-323
    • /
    • 2023
  • Marine accidents due to loss of stability of small ships have continued to increase over the past decade. In particular, since sudden winds have been pointed out as main causes of most small ship accidents, safety measures have been established to prevent them. In this regard, to prevent accidents caused by sudden winds, a systematic analysis technique is required. The aim of the present study was to develop a probabilistic approach to estimate extreme value and evaluate effects of wind on motion characteristics of ships. The present study included studies of motion analysis, extraction of extreme values, and motion characteristics. A series analysis was conducted for three conditions: wave only, wave with uniform wind speed, and wave with the NPD wind model. Hysteresis filtering and Peak-Valley filtering techniques were applied to time-domain motion analysis results for extreme value extraction. Using extracted extreme values, the goodness of fit test was performed on four distribution functions to select the optimal distribution-function that best expressed extreme values. Motion characteristics of a fishing boat were evaluated for three periodic motion conditions (Heave, Roll, and Pitch) and results were compared. Numerical analysis was performed using a commercial solver, ANSYS-AQWA.

Characteristics on the Extreme Value Distributions of Deepwater Design ave Heights off the Korean Coast (한국 연안 심해 설계파고의 극치분포 특성)

  • Shin Taek Jeong;Jeong Dae Kim;Cho Hong Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.130-141
    • /
    • 2004
  • For a coastal or harbor structure design, one of the most important environmental factors is the appropriate design wave condition. Especially, the information of deepwater wave height distribution is essential for reliability design. In this paper, a set of deep water wave data obtained from KORDI(2003) were analyzed for extreme wave heights. These wave data at 67 stations off the Korean coast from 1979 to 1998 were arranged in the 16 directions. The probability distributions considered in this research were the Weibull, the Gumbel, the Log-pearson Type-III, and Lognormal distribution. For each of these distributions, three parameter estimation methods, i.e. the method of moments, maximum likelihood and probability weighted moments, were applied. Chi-square and Kolmogorov-Smirnov goodness-of-fit tests were performed, and the assumed distribution was accepted at the confidence level 95%. Gumbel distribution which best fits to the 67 station was selected as the most probable parent distribution, and optimally estimated parameters and 50 year design wave heights were presented.

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

Comparison of the Shallow-Water Design Wave Height on the Korean East Coast Based on Wave Observation Data and Numerical Simulation (장기파랑관측자료와 수치실험에 의한 동해안 천해설계파고 검토)

  • Jeong, Weon-Mu;Choi, Hyukjin;Cho, Hong-Yeon;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.292-302
    • /
    • 2016
  • In this study, shallow-water design waves are estimated for various return periods based on statistical analysis of extreme waves observed 13 years at four stations on the Korean east coast (Sokcho, Mukho, Hupo, Jinha). These values are compared with the results from SWAN simulation by using the deep water design waves conventionally used in Korea (KORDI, 2005). It was found that the simulated values of the shallow-water design waves are comparatively smaller than the values from the extreme value analysis, expecially below 30 years frequency, which implies possible under-estimation of the deep-water design waves on the Korean east coast.

Estimation of Live Load Effect of Single Truck Through Probabilistic Analysis of Truck Traffic on Expressway (고속도로 통행차량 통계 분석을 통한 단독차량의 활하중 효과 추정)

  • Yoon, Taeyong;Ahn, Sang-Sup;Kwon, Soon-Min;Paik, Inyeol
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • PURPOSES : This study estimated the load effect of a single heavy truck to develop a live load model for the design and assessment of bridges located on an expressway with a limited truck entry weight. METHODS : The statistical estimation methods for the live load effect acting on a bridge by a heavy vehicle are reviewed, and applications using the actual measurement data for trucks traveling on an expressway are presented. The weight estimation of a single vehicle and its effect on a bridge are fundamental elements in the construction of a live load model. Two statistical estimation methods for the application of extrapolation in a probabilistic study and an additional estimation method that adopts the extreme value theory are reviewed. RESULTS : The proposed methods are applied to the traffic data measured on an expressway. All of the estimation methods yield similar results using the data measured when the weight limit has been relatively well observed because of the rigid enforcement of the weight regulation. On the other hand, when the estimations are made using overweight traffic data, the resulting values differ with the estimation method. CONCLUSIONS : The estimation methods based on the extreme distribution theory and the modified procedure presented in this paper can yield reasonable values for the maximum weight of a single truck, which can be applied in both the design and evaluation of a bridge on an expressway.

Quantifying the 2022 Extreme Drought Using Global Grid-Based Satellite Rainfall Products (전지구 강수관측위성 기반 격자형 강우자료를 활용한 2022년 국내 가뭄 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Kwang-Ya;Do, Jong-Won;Isaya Kisekka
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.41-50
    • /
    • 2024
  • Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.

Design and Manufacturing of an Ultrasonic Waveguide for Nano-surface Treatment (나노표면개질 용 초음파 진동자 설계 및 제작)

  • Kim, Hyunse;Lee, Yanglae;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1115-1119
    • /
    • 2014
  • In this article, a 20 kHz ultrasonic waveguide for nano-surface treatment was designed and manufactured. When designing the system, finite element analysis with ANSYS software was performed to find optimal dimensions of the waveguide, which can raise energy efficiency. Consequently an anti-resonance frequency of an Al waveguide with a piezoelectric actuator was 20 kHz, which predicted the experimentally obtained value of 18 kHz well. For the assessment of the performance, Steel Use Stainless (SUS) 304 and chromium molybdenum steel (SCM) 435 specimens were tested. Cross-sectional microscopies of SUS304 were taken and they showed that the treated thickness was $30{\mu}m$. Additionally, hardness tests of SCM435 were done and the hardness before the process was 14.0 Rockwell Hardness-C scale (HRC) and after the process was 20.5 HRC, respectively, which means 46% increase. Considering these results, the developed ultrasonic system is thought to be effective in the nano-surface treatment process.

The Planting Models of Maritime Forest by the Plant Community Structure Analysis in the Seaside, Incheon - A Case Study on Pinus thunbergil Community and P. densiflora Community- (인천해안지역의 식물군집구조 분석을 통한 해안림 식재모델 연구(I) - 곰솔림과 소나무림을 대상으로 -)

  • 권전오;이경재;장상항
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.53-63
    • /
    • 2004
  • Planting models for restoration forest on the seaside have been demanded because coastal reclaimed land has increased for habitation sites, industrial complexes and new towns on the west seaside of Korea. The planting models have to consider endurance for bad environmental conditions in order to make a role to protect the urban space against the extreme seaside environment. The dominant species, relative impotance value, individuals and species number were analysed in natural forests that were exposed to extreme seaside conditions in Deokjeok island and Younghung island, Incheon. The native species such as Pinus thunbergii and Pinus densiflora, which survive on the seaside, were mainly recommended because the coastal reclaimed land had extreme environmental conditions. Stable vegetation structures could be made by multi-layer planing by using these species. A diverse vegetation community could be made according to these planting models. The maritime forests made by these planting models might be more effective for environmental adaptation and a windbreak forest than alone tree, and the young trees below 3m height could easily adapt to these conditions.