• Title/Summary/Keyword: Extreme learning machine

Search Result 155, Processing Time 0.022 seconds

Development of ELM based Load Modeling Method for Residential Loads (ELM을 이용한 주거용 부하의 부하모델링 기법 개발)

  • Jung, Young-Taek;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • Due to the increasing of nonlinear loads such as converters and inverters connected to the electric power distribution system, and extensive application of harmonic generation sources with power electronic devices, disturbance of the electric power system and its influences on industries have been continuously increasing. Thus, it is difficult to construct accurate load model for active and reactive power in environments with harmonics. In this research, we develop a load modeling method based on Extreme Learning Machine(ELM) with fast learning procedure for residential loads. Using data sets acquired from various residential loads, the proposed method has been intensively tested. As the experimental results, we confirm that the proposed method makes it possible to effective estimate active and reactive powers than conventional methods.

Development of Daily Peak Power Demand Forecasting Algorithm using ELM (ELM을 이용한 일별 최대 전력 수요 예측 알고리즘 개발)

  • Ji, Pyeong-Shik;Kim, Sang-Kyu;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • Due to the increase of power consumption, it is difficult to construct an accurate prediction model for daily peak power demand. It is very important work to know power demand in next day to manage and control power system. In this research, we develop a daily peak power demand prediction method based on Extreme Learning Machine(ELM) with fast learning procedure. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model (Support Vector Machine과 상태공간모형을 이용한 단변량 수문 시계열의 동역학적 비선형 예측모형)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.279-289
    • /
    • 2006
  • The reconstruction of low dimension nonlinear behavior from the hydrologic time series has been an active area of research in the last decade. In this study, we present the applications of a powerful state space reconstruction methodology using the method of Support Vector Machines (SVM) to the Great Salt Lake (GSL) volume. SVMs are machine learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space. SVMs are optimized by minimizing a bound on a generalized error (risk) measure, rather than just the mean square error over a training set. The utility of this SVM regression approach is demonstrated through applications to the short term forecasts of the biweekly GSL volume. The SVM based reconstruction is used to develop time series forecasts for multiple lead times ranging from the period of two weeks to several months. The reliability of the algorithm in learning and forecasting the dynamics is tested using split sample sensitivity analyses, with a particular interest in forecasting extreme states. Unlike previously reported methodologies, SVMs are able to extract the dynamics using only a few past observed data points (Support Vectors, SV) out of the training examples. Considering statistical measures, the prediction model based on SVM demonstrated encouraging and promising results in a short-term prediction. Thus, the SVM method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

Real-time Artificial Neural Network for High-dimensional Medical Image (고차원 의료 영상을 위한 실시간 인공 신경망)

  • Choi, Kwontaeg
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.637-643
    • /
    • 2016
  • Due to the popularity of artificial intelligent, medical image processing using artificial neural network is increasingly attracting the attention of academic and industry researches. Deep learning with a convolutional neural network has been proved to very effective representation of images. However, the training process requires high performance H/W platform. Thus, the realtime learning of a large number of high dimensional samples within low-power devices is a challenging problem. In this paper, we attempt to establish this possibility by presenting a realtime neural network method on Raspberry pi using online sequential extreme learning machine. Our experiments on high-dimensional dataset show that the proposed method records an almost real-time execution.

ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost

  • Thongsuwan, Setthanun;Jaiyen, Saichon;Padcharoen, Anantachai;Agarwal, Praveen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.522-531
    • /
    • 2021
  • We describe a new deep learning model - Convolutional eXtreme Gradient Boosting (ConvXGB) for classification problems based on convolutional neural nets and Chen et al.'s XGBoost. As well as image data, ConvXGB also supports the general classification problems, with a data preprocessing module. ConvXGB consists of several stacked convolutional layers to learn the features of the input and is able to learn features automatically, followed by XGBoost in the last layer for predicting the class labels. The ConvXGB model is simplified by reducing the number of parameters under appropriate conditions, since it is not necessary re-adjust the weight values in a back propagation cycle. Experiments on several data sets from UCL Repository, including images and general data sets, showed that our model handled the classification problems, for all the tested data sets, slightly better than CNN and XGBoost alone and was sometimes significantly better.

A Novel RFID Dynamic Testing Method Based on Optical Measurement

  • Zhenlu Liu;Xiaolei Yu;Lin Li;Weichun Zhang;Xiao Zhuang;Zhimin Zhao
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Implementation and Experimental Results of Neural Network and Genetic Algorithm based Spam Filtering Technique (신경망과 운전자 알고리즘을 이용한 스팸 메일 필터링 기법에 구현과 성능평가)

  • Kim Bum-Bae;Choi Hyoung-Kee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.259-266
    • /
    • 2006
  • As the volume of spam has increased to extreme levels, many anti-spam filtering techniques have been proposed. Among these techniques, the machine-Loaming filtering technique is one of the most popular filtering techniques. In this paper, we propose a machine-learning spam filtering technique based on the neural network, the genetic algorithm and the $X^2$-statistic. This proposed filtering technique is designed to overcome the problems in existing filtering techniques, and to achieve high spam filtering accuracy. It is able to classify spam and legitimate emil with 95.25 percent and 95.31 percent accuracy. This accuracy of the sum filtering is 7.75 percent and the 12.44 percent higher than rule-based filtering and the Bayesian filtering technique, respectively.

Nanotechnology in early diagnosis of gastro intestinal cancer surgery through CNN and ANN-extreme gradient boosting

  • Y. Wenjing;T. Yuhan;Y. Zhiang;T. Shanhui;L. Shijun;M. Sharaf
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.451-466
    • /
    • 2023
  • Gastrointestinal cancer (GC) is a prevalent malignant tumor of the digestive system that poses a severe health risk to humans. Due to the specific organ structure of the gastrointestinal system, both endoscopic and MRI diagnoses of GIC have limited sensitivity. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high recurrence rates in surgical and pharmacological therapy. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for the detection and treatment of cancer. Because of its deep location and complex surgery, diagnosing and treating gastrointestinal cancer is very difficult. The early diagnosis and urgent treatment of gastrointestinal illness are enabled by nanotechnology. As diagnostic and therapeutic tools, nanoparticles directly target tumor cells, allowing their detection and removal. XGBoost was used as a classification method known for achieving numerous winning solutions in data analysis competitions, to capture nonlinear relations among many input variables and outcomes using the boosting approach to machine learning. The research sample included 300 GC patients, comprising 190 males (72.2% of the sample) and 110 women (27.8%). Using convolutional neural networks (CNN) and artificial neural networks (ANN)-EXtreme Gradient Boosting (XGBoost), the patients mean± SD age was 50.42 ± 13.06. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.037), distant metastasis (P = 0.004), and tumor stage (P = 0.015) were shown to have a statistically significant link with GC patient survival. AUC was 0.92, sensitivity was 81.5%, specificity was 90.5%, and accuracy was 84.7 when analyzing stomach picture.