Abstract
As the volume of spam has increased to extreme levels, many anti-spam filtering techniques have been proposed. Among these techniques, the machine-Loaming filtering technique is one of the most popular filtering techniques. In this paper, we propose a machine-learning spam filtering technique based on the neural network, the genetic algorithm and the $X^2$-statistic. This proposed filtering technique is designed to overcome the problems in existing filtering techniques, and to achieve high spam filtering accuracy. It is able to classify spam and legitimate emil with 95.25 percent and 95.31 percent accuracy. This accuracy of the sum filtering is 7.75 percent and the 12.44 percent higher than rule-based filtering and the Bayesian filtering technique, respectively.
스팸 메일의 양의 급증함에 따라, 다양한 스팸 메일 필터링 기법이 제시되고 있다. 이런 필터링 기법 가운데, 학습 기반 필터링 기법은 현재 가장 보편화된 필터링 기법 가운데 하나이다. 본고에서는 신경망과, 유전자알고리즘, 카이제곱통계를 이용한 학습 기반 필터링 기법을 제시한다. 제안된 필터링 기법은 기존 필터링 기법의 문제를 해결하고, 스팸 메일 필터링에 높은 정확도를 제공할 수 있다 제안된 필터링 기법은 스팸메일 필터링 정확도와 정상 메일 필터링 정확도에서 각각 95.25%와 95.31%의 높은 정확도를 보인다. 이런 실험 결과는 기존의 규칙 기반 필터링 기법과 베이지안 필터링 기법에 비해 각각 7%, 12% 이상 높은 수치이다.