• Title/Summary/Keyword: Extreme drought

Search Result 154, Processing Time 0.017 seconds

Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change (Decision Scaling 기반 댐 운영 기후변화 가뭄 취약성 평가)

  • Kim, Jiheun;Seo, Seung Beom;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.273-284
    • /
    • 2023
  • Water supply is continuously suffering from frequent droughts under climate change, and such extreme events are expected to become more frequent due to climate change. In this study, the decision scaling method was introduced to evaluate the drought vulnerability under future climate change in a wider range. As a result, the water supply reliability of the Boryeong Dam ranged from 95.80% to 98.13% to the condition of the aqueduct which was constructed at the Boryeong Dam. Furthermore, the Boryeong Dam was discovered to be vulnerable under climate change scenarios. Hence, genetic algorithm-based hedging rules were developed to evaluate the reduction effect of drought vulnerability. Moreover, three demand scenarios (high, standard, and low demand) were also considered to reflect the future socio-economic change in the Boryeong Dam. By analyzing quantitative reliability and the probability of extreme drought occurrence under 5% of the water storage rate, all hedging rules demonstrated that they were superior in preparing for extreme drought under low-demand scenarios.

Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

Comparison of Meteorological Drought Indices Using Past Drought Cases of Taebaek and Sokcho (태백, 속초 과거 가뭄사례를 이용한 기상학적 가뭄지수의 비교 고찰)

  • Kang, Dong Ho;Nam, Dong Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.735-742
    • /
    • 2019
  • Drought is a social phenomenon in which the degree of perception varies depending on the affected factors, and is defined as various relative concepts such as meteorological drought, hydrological drought, agricultural drought, and climatological drought. In this study, a comparative analysis of meteorological drought among variously defined droughts was conducted and the applicability of the drought index was examined by comparing the actual drought cases and the results of meteorological drought index analysis. In order to compare the drought index, we used standardized Precipitation Index (SPI), China-Z Index (CZI), Modified CZI (MCZI) and Z-Score Index Respectively. Four drought indices were used for the Taebaek and Sokcho areas. The drought index was analyzed using the meteorological data from 1986 to 2015 for a duration of 3 months. As a result of the analysis, the SPI drought index was analyzed to be highly reproducible for the case of drought with past limited water series. In the case of CZI and MCZI drought indices, the number of extreme dry occurrences is similar to that of the past cases, but the reproducibility is low for the actual drought years. In the case of ZSI drought index, it is analyzed that the number of occurrences and the comparison with the past cases are inferior in reproducibility. For the meteorological drought index using precipitation, it would be effective to use the SPI drought index with the highest reproducibility and the past drought case.

A Modified Standardized Precipitation Index (MSPI) and Its Application (수정 표준강수지수의 제안 및 적용)

  • Ryoo, So-Ra;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.553-567
    • /
    • 2004
  • This study proposes a modified standardized precipitation index (MSPI) which was developed to make up for the weakness of the SPI. Both MSPI and SPI are applied to the monthly rainfall at the Seoul station for the drought analysis. The MSPI proposed is nothing but the SPI for the normalized monthly rainfall, that is, an extra step for normalizing the monthly rainfall is included before driving the SPI. Thus, the MSPI has a structure to transfer the relative amount of rainfall to the next months, but the SPI the absolute amount of rainfall. The monthly rainfall data at the Seoul station used in this study are those collected from 1777 to 1996. The rainfall data collected before and after the long dry period around 1900 were also analyzed separately for the comparison. The results derived are as follows. (1) The MSPI was found to be more practical compared to the SPI. This was assured by comparing the analysis results of the data including and excluding the long dry period around 1900. (2) The MSPI is found to be less sensitive than the SPI to the extreme rainfall events. For the MSPI, the occurrence probabilities of moderate drought before and after the long dry period are similar, but those for the extreme drought becomes slightly decreased after the long dry period (from about 18 years of return period before the long dry period to the 16 years after the long dry period). However, the duration becomes longer after the long dry period (the duration for the extreme drought has been increased from 2 to 2.5 months after the long dry period). This results can also be compared with a rather unreasonable result derived by applying the SPI (for the extreme drought the return period has been decreased to be from 25 to 10 years after the long dry period, on the other hand the duration has been increased from 1.5 months to 3.5 months). So, we man conclude that the MSPI is more practical for the drought analysis that the SPI.

Development of A Single Reservoir Agricultural Drought Evaluation Model for Paddy (단일저수지 농업가뭄평가모형의 개발)

  • Chung, Ha-Woo;Choi, Jin-Yong;Park, Ki-Wook;Bae, Seung-Jong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • This study aimed to develop an agricultural drought assessment methodology for irrigated paddy field districts from a single reservoir. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The suggested model, SRADEMP (a Single Reservoir Agricultural Drought Evaluation Model for Paddy), was composed of 4 submodels: PWBM (Paddy Water Balance Model), RWBM (Reservoir Water Balance Model), FA (Frequency and probability Analysis model), and DCI (Drought Classification and Indexing model). Two indices, PDF (Paddy Drought Frequency) and PDI (Paddy Drought Index) were also introduced to classify agricultural drought severity Both values were divided into 4 steps, i.e. normal, moderate drought, severe drought, and extreme drought. Each step of PDI was ranged from +4.2 to -1.39, from -1.39 to -3.33, from -3.33 to -4.0 and less than -4.0, respectively. SRADEMP was applied to Jangheung reservoir irrigation district, and the results showed good relationships between simulated results and the observed data including historical drought records showing that SRADEMP explains better the drought conditions in irrigated paddy districts than PDSI.

Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis (가뭄빈도해석을 통한 가뭄심도-지속시간-생기빈도 곡선의 유도)

  • Lee, Joo-Heon;Kim, Chang-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.889-902
    • /
    • 2011
  • In this study, frequency analysis using drought index had implemented for the derivation of drought severity-duration-frequency (SDF) curves to enable quantitative evaluations of past historical droughts having been occurred in Korean Peninsular. Seoul, Daejeon, Daegu, Gwangju, and Busan weather stations were selected and precipitation data during 1974~2010 (37 years) was used for the calculation of Standardized Precipitation Index (SPI) and frequency analysis. Based on the results of goodness of fit test on the probability distribution, Generalized Extreme Value (GEV) was selected as most suitable probability distribution for the drought frequency analysis using SPI. This study can suggest return periods for historical major drought events by using newrly derived SDF curves for each stations. In case of 1994~1995 droughts which had focused on southern part of Korea. SDF curves of Gwangju weather station showed 50~100 years of return period and Busan station showed 100~200 years of return period. Besides, in case of 1988~1989 droughts, SDF of Seoul weather station were appeared as having return periods of 300 years.

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia (동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가)

  • Chun, Jong Ahn;Lee, Eunjeong;Kim, Daeha;Kim, Seon Tae;Lee, Woo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.409-416
    • /
    • 2020
  • An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.

Evaluating the Agricultural Drought for Pre-Kharif Season in Bangladesh using MODIS Vegetation Health Index (MODIS VHI를 이용한 방글라데시 Pre-Kharif 시즌 농업가뭄의 평가)

  • Mohammad, Kamruzzaman;Jang, Min-Won;Hwang, Syewoon;Jang, Taeil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.55-63
    • /
    • 2018
  • This paper aimed to characterize the spatial and temporal pattern of agricultural drought in Pre-Kharif season using Vegetation Health Index (VHI) and illustrated drought characteristics in Bangladesh during 2001-2015. VHI was calculated from TCI (Temperature Condition Index) and VCI (Vegetation Condition Index) derived from MODIS Terra satellite data, LST (Land Surface Temperature) and EVI (Enhanced Vegetation Index), respectively. The finding showed that all drought-affected areas were experienced by mild, moderate, severe and extreme droughts in several years of Pre-Kharif seasons. Significant drought events were found in the year of 2002 and 2013. On average, Chittagong district covered the largest drought area in all drought stages, and the fraction of drought area was the highest in Sylhet and Rangpur for Pre-Kharif season. Finally, overlaying annual VHI raster maps resulted in that the most vulnerable district to agricultural drought were Sylhet, Rangpur, and Mymensingh in the northern and eastern regions of Bangladesh.

Improvement of Drought Operation Criteria in Agricultural Reservoirs (농업용 저수지 이수관리를 위한 저수율 가뭄단계기준 개선)

  • Mun, Young-Sik;Nam, Won-Ho;Woo, Seung-Beom;Lee, Hee-Jin;Yang, Mi-Hye;Lee, Jong-Seo;Ha, Tae-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • Currently, the operation rule of agricultural reservoirs in case of drought events follows the drought forecast warning standard of agricultural water supply. However, it is difficult to preemptively manage drought in individual reservoirs because drought forecasting standards are set according to average reservoir storage ratio such as 70%, 60%, 50%, and 40%. The equal standards based on average water level across the country could not reflect the actual drought situation in the region. In this study, we proposed the improvement of drought operation rule for agricultural reservoirs based on the percentile approach using past water level of each reservoir. The percentile approach is applied to monitor drought conditions and determine drought criteria in the U.S. Drought Monitoring (USDM). We applied the drought operation rule to reservoir storage rate in extreme 2017 spring drought year, the one of the most climatologically driest spring seasons over the 1961-2021 period of record. We counted frequency of each drought criteria which are existing and developed operation rules to compare drought operation rule determining the actual drought conditions during 2016-2017. As a result of comparing the current standard and the percentile standard with SPI6, the percentile standard showed severe-level when SPI6 showed severe drought condition, but the current standard fell short of the results. Results can be used to improve the drought operation criteria of drought events that better reflects the actual drought conditions in agricultural reservoirs.

Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging

  • Mo, Changyeun;Kim, Moon S.;Kim, Giyoung;Cheong, Eun Ju;Yang, Jinyoung;Lim, Jongguk
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2015
  • Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were obtained for the two soybean cultivars using the results of the developed model during the period of drought stress treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of hyperspectral fluorescence images for assessing drought stress in soybeans.