• Title/Summary/Keyword: Extreme climate

Search Result 524, Processing Time 0.026 seconds

Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change (기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용)

  • Kim, Youngkyu;Son, Minwoo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.

Monthly Changes in Temperature Extremes over South Korea Based on Observations and RCP8.5 Scenario (관측 자료와 RCP8.5 시나리오를 이용한 우리나라 극한기온의 월별 변화)

  • Kim, Jin-Uk;Kwon, Won-Tae;Byun, Young-Hwa
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.61-72
    • /
    • 2015
  • In this study, we have investigated monthly changes in temperature extremes in South Korea for the past (1921~2010) and the future (2011~2100). We used seven stations' (Gangneung, Seoul, Incheon, Daegu, Jeonju, Busan, Mokpo) data from KMA (Korea Meteorological Administration) for the past. For the future we used the closest grid point values to observations from the RCP8.5 scenario of 1 km resolution. The Expert Team on Climate Change Detection and Indices (ETCCDI)'s climate extreme indices were employed to quantify the characteristics of temperature extremes change. Temperature extreme indices in summer have increased while those in winter have decreased in the past. The extreme indices are expected to change more rapidly in the future than in the past. The number of frost days (FD) is projected to decrease in the future, and the occurrence period will be shortened by two months at the end of the $21^{st}$ century (2071~2100) compared to the present (1981~2010). The number of hot days (HD) is projected to increase in the future, and the occurrence period is projected to lengthen by two months at the end of the $21^{st}$ century compared to the present. The annual highest temperature and its fluctuation is expected to increase. Accordingly, the heat damage is also expected to increase. The result of this study can be used as an information on damage prevention measures due to temperature extreme events.

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia (동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가)

  • Chun, Jong Ahn;Lee, Eunjeong;Kim, Daeha;Kim, Seon Tae;Lee, Woo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.409-416
    • /
    • 2020
  • An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.

The present state of natural disaster caused by extreme heat in the Korea Peninsula (폭염으로 인한 한반도 자연재해 현황)

  • Kim, Eun-Byul;Park, Jong-Kil;Kim, Baek-Jo
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.323-326
    • /
    • 2007
  • Recently, occurrence frequency of natural disasters decrease but scale of damage increase remarkably by the Climate change due to global warming. Especially, extreme heat become more critical weather problem in the Korean Peninsula. But, we don't have exact threshold about extreme heat. Extreme heat does not classify into natural disaster. Therefore, we have compared death count of the natural disaster with the one of extreme heat at Seoul, Korea. As a result, the number of death by extreme heat don't smaller than one by the natural disasters and we knew extreme heat have also to consider as natural disaster.

  • PDF

Frequency analysis of nonidentically distributed large-scale hydrometeorological extremes for South Korea

  • Lee, Taesam;Jeong, Changsam;Park, Taewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.537-537
    • /
    • 2015
  • In recent decades, the independence and identical distribution (iid) assumption for extreme events has been shown to be invalid in many cases because long-term climate variability resulting from phenomena such as the Pacific decadal variability and El Nino-Southern Oscillation may induce varying meteorological systems such as persistent wet years and dry years. Therefore, in the current study we propose a new parameter estimation method for probability distribution models to more accurately predict the magnitude of future extreme events when the iid assumption of probability distributions for large-scale climate variability is not adequate. The proposed parameter estimation is based on a metaheuristic approach and is derived from the objective function of the rth power probability-weighted sum of observations in increasing order. The combination of two distributions, gamma and generalized extreme value (GEV), was fitted to the GEV distribution in a simulation study. In addition, a case study examining the annual hourly maximum precipitation of all stations in South Korea was performed to evaluate the performance of the proposed approach. The results of the simulation study and case study indicate that the proposed metaheuristic parameter estimation method is an effective alternative for accurately selecting the rth power when the iid assumption of extreme hydrometeorological events is not valid for large-scale climate variability. The maximum likelihood estimate is more accurate with a low mixing probability, and the probability-weighted moment method is a moderately effective option.

  • PDF

Study on the development of extreme heat health watch warning system threshold for personal injury prevention (폭염시기 인명 피해 예방을 위한 폭염특보기준 설정에 관한 연구)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Eun-Byul;Song, Jeong-Hui
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.385-388
    • /
    • 2008
  • Recently, occurrence frequency of natural disaster decrease but scale of damage increase remarkably by the Climate change due to global warming. Especially, extreme heat become more critical wether problem in the Korean Peninsula. But, we don't have exact threshold about extreme heat. Therefore, to assess the influences by the extreme heat on personal injury, we analyzed statistics on the causes of the daily mortality. And we developed a threshold for extreme heat health watch warning system.

  • PDF

Change Projection of Extreme Indices using RCP Climate Change Scenario (RCP 기후변화시나리오를 이용한 극한지수 변화 전망)

  • Jeung, Se-Jin;Sung, Jang Hyun;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1089-1101
    • /
    • 2013
  • The study uses a regional climate model to check future changes in extreme climate, to calculate extreme indexes presented by STARDEX, and to analyze the trends to predict the continuity and changes in the spatial distribution of extreme climate in the future. An analysis of extreme climate indices showed that they are likely to increase in the Seoul metropolitan area, in Gyeonggi-do, in Yongdong in Gangwon-do, and in the southern shore region of Korea. It is, however, forecasted to diminish in the central inland region. The analysis also showed that the average temperature in Korea will increase because of climate change. On the other hand, an analysis of extreme rainfall indexes showed that the trend of heavy rainfall threshold is 0.229 in Seogwipo, the greatest five-day rainfall is 5.692 in Seogwipo, and the longest dry period is 0.099 in Sokcho. Of extreme temperature indexes, the trend of Hotdays threshold is 0.777 in Incheon and the longest heat wave is 0.162 in Uljin. The Coldnight threshold is 0.075 in Inje and -0.193 in Tongyeong, according to the analysis.

Understanding Climate Change over East Asia under Stabilized 1.5 and 2.0℃ Global Warming Scenarios (1.5/2.0℃ 지구온난화 시나리오 기반의 동아시아 기후변화 분석)

  • Shim, Sungbo;Kwon, Sang-Hoon;Lim, Yoon-Jin;Yum, Seong Soo;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.391-401
    • /
    • 2019
  • This study first investigates the changes of the mean and extreme temperatures and precipitation in East Asia (EA) under stabilized 1.5℃ and 2℃ warming conditions above preindustrial levels provided by HAPPI project. Here, five model with 925 members for 10-year historical period (2006~2015) and 1.5/2.0℃ future warming scenarios (2091~2100) have been used and monthly based data have been analyzed. The results show that the spatial distribution fields over EA and domain averaged variables in HAPPI 1.5/2.0℃ hindcast simulations are comparable to observations. It is found that the magnitude of mean temperature warming in EA and Korea is similar to the global mean, but for extreme temperatures local higher warming trend for minimum temperature is significant. In terms of precipitation, most subregion in EA will see more increased precipitation under 1.5/2.0℃ warming compared to the global mean. These attribute for probability density function of analyzed variables to get wider with increasing mean values in 1.5/2.0℃ warming conditions. As the result of vulnerability of 0.5℃ additional warming from 1.5 to 2.0℃, 0.5℃ additional warming contributes to the increases in extreme events and especially the impact over South Korea is slightly larger than EA. Therefore, limiting global warming by 0.5℃ can help avoid the increases in extreme temperature and precipitation events in terms of intensity and frequency.

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.

Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyang-dam Watershed (기후변화에 따른 미래 극한호우사상이 소양강댐 유역의 유량 및 유사량에 미치는 영향)

  • Han, Jeong Ho;Lee, Dong Jun;Kang, Boosik;Chung, Se Woong;Jang, Won Seok;Lim, Kyoung Jae;Kim, Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.160-169
    • /
    • 2017
  • The objective of this study are to analyze changes in future rainfall patterns in the Soyang-dam watershed according to the RCP 4.5 scenario of climate change. Second objective is to project peak flow and hourly sediment simulated for the future extreme rainfall events using the SWAT model. For these, accuracy of SWAT hourly simulation for the large scale watershed was evaluated in advance. The results of model calibration showed that simulated peak flow matched observation well with acceptable average relative error. The results of future rainfall pattern changes analysis indicated that extreme storm events will become more severe and frequent as climate change progresses. Especially, possibility of occurrence of large scale extreme storm events will be greater on the periods of 2030-2040 and 2050-2060. In addition, as shown in the SWAT hourly simulation for the future extreme storm events, more severe flood and turbid water can happen in the future compared with the most devastating storm event which occurred by the typhoon Ewiniar in 2006 year. Thus, countermeasures against future extreme storm event and turbid water are needed to cope with climate change.