• Title/Summary/Keyword: Extraction and separation

Search Result 661, Processing Time 0.024 seconds

Separation of Palladium(II) and Ruthenium(IV) from Hydrochloric Acid Solution by Solvent Extraction (염산용액에서 용매추출에 의한 팔라듐(II)과 루테늄(IV)의 분리)

  • Lee, Man-seung;Ahn, Jong-Gwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.349-355
    • /
    • 2009
  • In the solvent extraction of Ru(IV) with Alamine336, it was found that Ru took part in the reaction as $RuCl_{6}_^{2-}$ in the HCl concentration range of 1 to 5 M. Interaction parameter between hydrogen ion and $RuCl_{6}_^{2-}$ was estimated by applying Bromley equation to the extraction data. From the mixed solutions of Pd(II) and Ru(IV), the distribution coefficients of Pd were found to be higher than those of Ru in the experimental ranges. Separation factor between Pd and Ru rapidly increased with the decrease of Alamine336 concentration. About 60% of the Ru from the mixed solutions was extracted by TBP at 8.3 M HCl, while Pd was not extracted in the HCl concentration range of 1.6 to 8.3 M.

Separation and Quantification of Parasitic Resistance in Nano-scale Silicon MOSFET

  • Lee Jun-Ha;Lee Hoong-Joo;Song Young-Jin;Yoon Young-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.2
    • /
    • pp.49-53
    • /
    • 2005
  • The current drive in a MOSFET is limited by the intrinsic channel resistance. All other parasitic elements in a device structure perform significant functions leading to degradation in the device performance. These other resistances must be less than 10$\%$-20$\%$ of the channel resistance. To meet the necessary requirements, the methodology of separation and quantification of those resistances should be investigated. In this paper, we developed an extraction method for the resistances using calibrated TCAD simulation. The resistance of the extension region is also partially determined by the formation of a surface accumulation region that gathers below the gate in the tail region of the extension profile. This resistance is strongly affected by the abruptness of the extension profile because the steeper the profile is, the shorter this accumulation region will be.

Separation of $Sr^{2+}$ Ion from Seawater by Liquid Membrane Permeator with Two Micro-Porous Films (지지막을 이용한 액막 추출기에 의한 합성해수 중의 $Sr^{2+}$ 이온 분리)

  • 주창식;이회근;정갑섭
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.517-522
    • /
    • 2000
  • Separation of strontium ion from synthetic seawater in the contained liquid membrane permeator with two micro-porous films was performed. The permeator consisted of a liquid membrane and two cells for aqueous solutions. The liquid membrane consisted of $D_2EHPA(di-2-ethylhexy1-phosphoric acid)$ and DCH18C6 (dicyclohexano-18-crown-6),diluted to 30 vol% with kerosine and was trapped between two micro-porous hydrophilic films. This liquid membrane separated two aqueous solutions, one of which was synthetic seawater and the other of which was the stripping solutions consisting of 1mol/L $H_2SO_4$ solution. The effects of various operating parameters on the extraction rate and equilibrium extraction ratio of strontium ion from synthetic seawater were experimentally examined. The addition of DCH18C6 to the $D_2EHPA$ solution caused synergy effect on the extraction of strontium ion. The permeator extracted strontium ion from synthetic seawater effectively with high membrane life time.

  • PDF

The synergistic solvent extraction effect of europium and yttrium using the hexanoic acid -crown ether system (Hexanoic acid - crown ether system을 이용한 europium과 yttrium의 용매추출효과의 향상)

  • Sim, Dea-Seon;Han, Hye-Rim;Kim, Se-Mi;Kim, Jeong-Hoon;Kim, Young-Wun;Jeong, Noh-Hee;Kang, Ho-Cheol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • The synergistic solvent extraction of rare earth elements such as europium and yttrium has been investigated by the extractant with crown ether as an additive. Macrocyclic ligand as host-guest compounds form more stable complexes with metal ions which have the similar size of the cavity of crown ether. In our previous study[14] founded that the extraction used fatty acid of the various alkyl chain length. Based on the results of the previous experiment, the synergistic separation effect of two metals investigated that the hexanoic acid had was the worst extraction effect which added a crown ether such as 18-crown-6 ether, 15-crown-5 ether, and 12-crown-4 ether. In this study, the concentrations of hexanoic acid have showed the separation effect, and then the concentrations and kind of crown ether are performed for synergistic extraction at the hexanoic acid concentration of the highest separation effect. As a results, the separation rate is the highest value of 1.72 at 0.05 M hexanoic acid, and 0.002M 15-crown-5 ether is the best value in other concentrations and kind of crown ether, it is about twice of using only hexanoic acid. Moreover, the extraction species of two metals has been founded $MLR_3{\cdot}3RH$ form when added the crown ether.

Studies on the Phase Separation of the Borosilicate Glass by Addition of Titanium Dioxide ($TiO_2$ 첨가에 따른 붕규산 유리의 분상에 관한 연구)

  • 박용완;민병욱
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.257-261
    • /
    • 1981
  • The tendency of glass containing titanium-dioxide to separate into two phases can be attributed to a change of the coordination number of titanium from six to four on increase of temperature and to "freezing" of the high temperature four fold coordination on cooling of the melt. Addition of TiO2 to the basic glass 8.7 $Na_2O$ 22.4B2O3 68.9 $SiO_2$ was varied 5 to 25 parts. The phase separation in the temperature range of transformation was examined with each heating temperature and soaking time. As the experimental results, the most distinct phase separation were obtained from alkali extraction method when $TiO_2$ was added 15 parts. The apparant activation energy was 30.5 Kcal/mole by alkali extraction method derived from Arrhenius plots.ius plots.

  • PDF

Solvent Extraction of Copper and Nickel from Manganese Nodule Leachate by LIX 84 (망간단괴 침출액으로부터 LIX 84에 의한 구리, 니켈의 용매추출)

  • Lee, Jae-Jang;Roh, Beom-Sik
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.189-195
    • /
    • 1999
  • A study on the separation Cu, Ni, and Co was carried out using LIX 84 leachate, chelate extractant. For this test, artificial test solution was prepared by varing concentrations of Cu, Ni, Co, $(NH_4)_2CO_3$ and $(NH_4)_2SO_4$. It found that pH of the solution was very important factor for the separation of nickel from copper. The results showed that nickel was effectively extracted from copper by using LIX 84 at pH 1.0 to 1.2. The volume ration or organic to aqueous phases was 1.0. According to the McCabe-Thiele diagram, the extraction rate of copper was 99 percents at the equal ratio of organic to aqueous phase in three stages.

  • PDF

Separation of Organic Pollutants by Nondispersive Membrane-Solvent Extraction (비분산 막-용매추출에 의한 유기오염물의 분리)

  • 유홍진;한성록
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.174-185
    • /
    • 2004
  • Organic pollutants (Phenol, 2-Chlorophenol, Nitrobenzene) were separated from wastewater by nondispersive membrane solvent extraction, using a microporous hydrophobic hollow fiber module. The system was operated countercurrently and cocurrently with the aqueous phase flowing through the fiber lumens and the solvent flowing through the shell side. The distribution coefficients of several solvents (MIBK, IPAc, Hexane) were examined and MIBK was selected as an extracting solvent. Separation efficiency of countercurrent flow method was better than that of cocurrent flow method. Also, the overall mass transfer coefficients were determined.

  • PDF

A Study on Extraction and Adsorption of Three Phenolic Ketones (페놀케톤 3종의 추출 및 흡착에 관한 연구)

  • Sang Cheol Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • The extraction and adsorption characteristics for three phenolic ketones with high physicochemical similarity among phenolic compounds, which are alcohol fermentation inhibitors in lignocellulosic biomass hydrolysates, were investigated. The most suitable basic extractant for selectively separating acetosyringone from three phenol ketones by reactive extraction was found to be trioctylphosphine oxide. In addition, it was found that adsorption using XAD16, a polymer neutral resin adsorbent, or physical extraction using hexane, was a suitable separation method for separation of 4'-hydroxyacetophenone (HAP) and acetovanillone (AVO). A five-step fractionation process including extraction and adsorption mentioned above has been first proposed to separate and concentrate the three phenol ketones present at equal mass percentages. When physical extraction with n-hexane and re-extraction with an aqueous NaOH solution were used as the steps 4 and 5 in the fractionation process respectively, it was possible to obtain almost 70% or more of the purity of three phenolic ketones.

Solvent Extraction for the Separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) from 3 M Hydrochloric Acid Solution (3 M의 염산용액에서 팔라듐(II), 백금(IV), 이리듐(IV) 및 로듐(III)의 분리를 위한 용매추출)

  • Nguyen, Thi Hong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.26-31
    • /
    • 2017
  • LIX 63 showed a selectivity for the extraction of Pd(II) over other PGMs, such as Pt(IV), Ir(IV) and Rh(III) from 6 M HCl solution. Moreover, HCl solution has significant effect on the oxidation-reduction reaction between Ir(IV) and LIX 63. Therefore, the applicability of employing LIX 63 for the separation of the 4 PGMs was investigated from 3 M HCl solution. From 3 M HCl solution, only Pd(II) was selectively extracted by LIX 63 and its extraction percentage was higher than from 6 M HCl solution. Extraction of the Pd(II) free raffinate with TBP led to the selective extraction of Pt(IV). After oxidation of Ir(III) with $NaClO_3$ to Ir(IV), extraction of the Pt(IV) free raffinate with Aliquat 336 selectively extracted Ir(IV). For each extraction step, optimum stripping conditions were obtained. By this process, it was possible to separate the 4 PGMs by solvent extraction from 3 M HCl solution.

Simultaneous Extraction and Separation of Oil and Azadirachtin from Seeds and Leaves of Azadirachta indica using Binary Solvent Extraction

  • Subramanian, Sheela;Salleh, Aiza Syuhaniz;Bachmann, Robert Thomas;Hossain, Md. Sohrab
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.150-156
    • /
    • 2019
  • Conventional extraction of oil and azadirachtin, a botanical insecticide, from Azadirachta indica involves defatting the seeds and leaves using hexane followed by azadirachtin extraction with a polar solvent. In order to simplify the process while maintaining the yield we explored a binary extraction approach using Soxhlet extraction device and hexane and ethanol as non-polar and polar solvents at various ratios and extraction times. The highest oil and azadirachtin yields were obtained at 6 h extraction time using a 50:50 solvent mixture for both neem leaves (44.7 wt%, $720mg_{Aza}/kg_{leaves}$) and seeds (53.5 wt%, $1045mg_{Aza}/kg_{leaves}$), respectively.