• 제목/요약/키워드: Extracellular signal-regulated kinases

검색결과 149건 처리시간 0.024초

Amphetamine-induced ERM Proteins Phosphorylation Is through $PKC{\beta}$ Activation in PC12 Cells

  • Jeong, Ha-Jin;Kim, Jeong-Hoon;Jeon, Song-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권4호
    • /
    • pp.245-249
    • /
    • 2011
  • Amphetamine, a synthetic psychostimulant, is transported by the dopamine transporter (DAT) to the cytosol and increases the exchange of extracellular amphetamine by intracellular dopamine. Recently, we reported that the phosphorylation levels of ezrin-radixin-moesin (ERM) proteins are regulated by psychostimulant drugs in the nucleus accumbens, a brain area important for drug addiction. However, the significance of ERM proteins phosphorylation in response to drugs of abuse has not been fully investigated. In this study, using PC12 cells as an in vitro cell model, we showed that amphetamine increases ERM proteins phosphorylation and protein kinase C (PKC) ${\beta}$ inhibitor, but not extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinases (PI3K) inhibitors, abolished this effect. Further, we observed that DAT inhibitor suppressed amphetamine-induced ERM proteins phosphorylation in PC12 cells. These results suggest that $PKC{\beta}$-induced DAT regulation may be involved in amphetmaine-induced ERM proteins phosphorylation.

Anti-inflammatory Activity of Fucoidan with Blocking NF-κB and STAT1 in Human Keratinocytes Cells

  • Ryu, Min Ju;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • 제21권3호
    • /
    • pp.205-209
    • /
    • 2015
  • Fucoidan, a sulfated polysaccharide is found in several types of edible brown algae. It has shown numerous biological activities; however, the molecular mechanisms on the activity against atopic dermatitis have not been reported yet. We now examined the effects of fucoidan on chemokine production co-induced by TNF-α/IFN-γ, and the possible mechanisms underlying these biological effects. Our data showed that fucoidan inhibited the TNF-α/IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophagederived chemokine (MDC) mRNA in human keratinocytes HaCaT cells. Also, fucoidan suppressed phosphorylation of nuclear factor kappa B (NF-κB) and activation of signal transducer and activator of transcription (STAT)1 in a dose-dependent manner. In addition, fucoidan significantly inhibited activation of extracellular-signal-regulated kinases (ERK) phosphorylation. These data indicate that fucoidan shows anti-inflammatory effects by suppressing the expression of TNF-α/IFN-γ-induced chemokines by blocking NF-κB, STAT1, and ERK1/2 activation, suggestive of as used as a therapeutic application in inflammatory skin diseases, such as atopic dermatitis.

Toll-Like Receptor 2 매개 Dual-Specificity Phosphatase 4 발현에서 Extracellular Signal-Regulated Kinase 1/2와 활성산소의 역할 (Role of Extracellular Signal-Regulated Kinase 1/2 and Reactive Oxygen Species in Toll-Like Receptor 2-Mediated Dual-Specificity Phosphatase 4 Expression)

  • 김소연;백석환
    • Journal of Yeungnam Medical Science
    • /
    • 제30권1호
    • /
    • pp.10-16
    • /
    • 2013
  • Background: Toll-like receptors (TLRs) are well-known pattern recognition receptors. Among the 13 TLRs, TLR2 is the most known receptor for immune response. It activates mitogen-activated protein kinases (MAPKs), which are counterbalanced by MAPK phosphatases [MKPs or dual-specificity phosphatases (DUSPs)]. However, the regulatory mechanism of DUSPs is still unclear. In this study, the effect of a TLR2 ligand (TLR2L, Pam3CSK4) on DUSP4 expression in Raw264.7 cells was demonstrated. Methods: A Raw264.7 mouse macrophage cell line was cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and 1% antibiotics (100 U/mL penicillin and 100 g/mL streptomycin) at $37^{\circ}C$ in 5% $CO_2$. TLR2L (Pam3CSK4)-mediated DUSP4 expressions were confirmed with RT-PCR and western blot analysis. In addition, the detection of reactive oxygen species (ROS) was measured with lucigenin assay. Results: Pam3CSK4 induced the expression of DUSP1, 2, 4, 5 and 16. The DUSP4 expression was also increased by TLR4 and 9 agonists (lipopolysaccharide and CpG ODN, respectively). Pam3CSK4 also induced ERK1/2 phosphorylation and ROS production, and the Pam3CSK4-induced DUSP4 expression was decreased by ERK1/2 (U0126) and ROS (DPI) inhibitors. U0126 suppressed the ROS production by Pam3CSK4. Conclusion: Pam3CSK4-mediated DUSP4 expression is regulated by ERK1/2 and ROS. This finding suggests the physiological importance of DUSP4 in TLR2-mediated immune response.

4주간 달리기 운동이 흰쥐의 전경골근에서 ERK 및 JNK의 활성화에 미치는 영향 (Effects of 4 Week Exercise on Activation of Extracellular Signal-regulated Kinases and c-Jun N-terminal Kinase Pathways in Rat Tibialis Muscle)

  • 최석준;신병철;박한수;김모경;신철호;김민선
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.76-81
    • /
    • 2007
  • The effect of either low or high intensity four weeks exercise treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the c-Jun N-terminal kinase(JNK) pathways was determined in rat tibialis muscle. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary group(NE; n=10); (ii) low intensity exercise group (8m/min; LIE; n=10); and (iii) high intensity exercise group(28m/min; HIE; n=10). The training regimens were planned so that animals covered the same distance and had similar glycogenutilization for both LIE and HIE exercise sessions. After four weeks exercise, 48 h after the last exercise bout obtained samples. pERK1 increased 1.5 times comparing with the sedentary group in the low intensity group while it increased 11.7 times in high intensity group, in the tibialis of rats. In the low intensity group, pERK2 increased 1.4 times comparing with the sedentary group while it increased 3.3 times in high intensity group. While pJNK1 decreased 0.9 times, comparing with the sedentary group, pJNK2 was increased to 0.5 times in the low intensity group. But in high intensity group, pJNK2 decreased 0.7 times while pJNK1 didn't show any change. In conclusion, Four weeks exercise of different intensities results in tibialis muscle activation of intracellular signal pathways, which may be one mechanism regulating specific adaptations induced by different exercise intensities.

Aquaporin 8 Involvement in Human Cervical Cancer SiHa Migration via the EGFR-Erk1/2 Pathway

  • Shi, Yong-Hua;Tuokan, Talaf;Lin, Chen;Chang, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6391-6395
    • /
    • 2014
  • Overexpression of aquaporins (AQPs) has been reported in several human cancers. Epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinases 1/2 (Erk1/2) are associated with tumorigenesis and cancer progression and may upregulate AQP expression. In this study, we demonstrated that EGF (epidermal growth factor) induces SiHa cells migration and AQP8 expression. Wound healing results showed that cell migration was increased by 2.79-1.50-fold at 24h and 48h after EGF treatment. AQP8 expression was significantly increased (3.33-fold) at 48h after EGF treatment in SiHa cells. An EGFR kinase inhibitor, PD153035, blocked EGF-induced AQP8 expression and cell migration and AQP8 expression was decreased from 1.59-fold (EGF-treated) to 0.43-fold (PD153035-treated) in SiHa. Furthermore, the MEK (MAPK (mitogen-activated protein kinase)/Erk (extracellular signal regulated kinase)/Erk inhibitor U0126 also inhibited EGF-induced AQP8 expression and cell migration. AQP8 expression was decreased from 1.21-fold (EGF-treated) to 0.43-fold (U0126-treated). Immunofluorescence microscopy further confirmed the results. Collectively, our findings show that EGF induces AQP8 expression and cell migration in human cervical cancer SiHa cells via the EGFR/Erk1/2 signal transduction pathway.

키토산 기반 나노방출제어시스템의 세포주기진행 유전자 발현 증진 효과 및 기전 (Effect and mechanism of chitosan-based nano-controlled release system on the promotion of cell cycle progression gene expression)

  • 이원중;박광만;이성복;황유정;이석원
    • 대한치과보철학회지
    • /
    • 제59권4호
    • /
    • pp.379-394
    • /
    • 2021
  • 목적: 이전 연구에서 치은섬유아세포 혹은 성견 구개 연조직에 trichloroacetic acid (TCA)를 적용하는 것이 세포주기진행 유전자 발현의 변화를 일으키는 것으로 밝혀졌다. 이에 따라 본 연구에서는, hydrophobically modified glycol chitosan (HGC)기반의 나노방출제어시스템을 이용한 TCA 및 상피세포성장인자(EGF)의 순차적 방출시스템에서 이 효과를 검증하기 위하여 다양한 세포주기진행 유전자들의 발현을 규명하였다. 재료 및 방법: TCA와 EGF를 담지하는 HGC기반 나노방출제어시스템을 제작하였다. 실험군은 대조군(CON); TCA-담지형 나노방출제어시스템 투여군(EXP1); TCA- 및 EGF-담지형 나노방출제어시스템 투여군(EXP2)으로 정의되었다. 24시간 및 48시간 배양 시 37개 세포주기 유전자들의 발현을 분석하였다. 영향인자로서의 유전자 및 상관관계에 대해서도 분석하였다. 결과: Cyclins (CCNDs), cell division cycles (CDCs), cyclin-dependent kinases (CDKs), E2F transcription factors (E2Fs), extracellular signal-regulated kinases (ERKs)와 같은 다수의 유전자들과 기타 다른 세포주기 유전자들의 발현이 EXP1과 EXP2에서 상향조절되었다. E2F4, E2F5, GADD45G와 같은 세포주기차단 유전자들의 발현도 상향조절되었으나, 또다른 세포주기차단 유전자인 SMAD4의 발현은 하향조절되었다. 다중회귀분석에서 CCNA2, CDK4 그리고 ANAPC4가 ERK 유전자 발현에 가장 영향력 있는 유전자로 선정되었다. 결론: HGC기반 순차적 나노방출제어시스템을 이용한 TCA 및 EGF의 적용은 다양한 세포주기진행 유전자들의 발현을 상향조절함이 밝혀졌고, 이를 토대로 한 구강연조직증대시스템 개발의 가능성이 확보되었다.

The proper concentrations of dextrose and lidocaine in regenerative injection therapy: in vitro study

  • Woo, Min Seok;Park, Jiyoung;Ok, Seong-Ho;Park, Miyeong;Sohn, Ju-Tae;Cho, Man Seok;Shin, Il-Woo;Kim, Yeon A
    • The Korean Journal of Pain
    • /
    • 제34권1호
    • /
    • pp.19-26
    • /
    • 2021
  • Background: Prolotherapy is a proliferation therapy as an alternative medicine. A combination of dextrose solution and lidocaine is usually used in prolotherapy. The concentrations of dextrose and lidocaine used in the clinical field are very high (dextrose 10%-25%, lidocaine 0.075%-1%). Several studies show about 1% dextrose and more than 0.2% lidocaine induced cell death in various cell types. We investigated the effects of low concentrations of dextrose and lidocaine in fibroblasts and suggest the optimal range of concentrations of dextrose and lidocaine in prolotherapy. Methods: Various concentrations of dextrose and lidocaine were treated in NIH-3T3. Viability was examined with trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Migration assay was performed for measuring the motile activity. Extracellular signal-regulated kinase (Erk) activation and protein expression of collagen I and α-smooth muscle actin (α-SMA) were determined with western blot analysis. Results: The cell viability was decreased in concentrations of more than 5% dextrose and 0.1% lidocaine. However, in the concentrations 1% dextrose (D1) and 0.01% lidocaine (L0.01), fibroblasts proliferated mildly. The ability of migration in fibroblast was increased in the D1, L0.01, and D1 + L0.01 groups sequentially. D1 and L0.01 increased Erk activation and the expression of collagen I and α-SMA and D1 + L0.01 further increased. The inhibition of Erk activation suppressed fibroblast proliferation and the synthesis of collagen I. Conclusions: D1, L0.01, and the combination of D1 and L0.01 induced fibroblast proliferation and increased collagen I synthesis via Erk activation.

Evaluation of Anti-inflammatory Activities and Mechanisms of Microalga Phaeodactylum tricornutum

  • Kim, Jeong Hwa;Kim, Sang Min;Pan, Cheol-Ho;Choi, Joong-Kook;Lee, Jae Kwon
    • Journal of Applied Biological Chemistry
    • /
    • 제56권2호
    • /
    • pp.61-67
    • /
    • 2013
  • Due to their diversity and abundancy, marine resources have emerged as important biological resources to compensate the limited sources of terrestrial biological materials. Phaeodactylum tricornutum (PT) is one of classical model diatoms most widely studied for its ecology, physiology, biochemistry and molecular biology. In this study, four different PT extracts on lipopolysaccharide (LPS)-stimulated macrophages were compared for anti-inflammatory effect and investigated for the underlying mechanisms. The extracts of PT inhibited nitric oxide production from LPS stimulated RAW 264.7 cells in a dose dependent manner. These extracts also inhibited the expression of mRNA and production of proteins of pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. These inhibitory effects were found to be caused by blockage of nuclear factor-${\kappa}B$ activation and phosphorylation of p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 and c-Jun N-terminal kinase.

ERK1/2 activation by the C. elegans muscarinic acetylcholine receptor GAR-3 in cultured mammalian cells involves multiple signaling pathways

  • Shin, Young-Mi;Shin, Young-Ju;Kim, Seung-Woo;Park, Yang-Seo;Cho, Nam-Jeong
    • Animal cells and systems
    • /
    • 제14권3호
    • /
    • pp.155-160
    • /
    • 2010
  • Extracellular signal-regulated kinases 1/2 (ERK1/2) play important roles in a variety of biological processes including cell growth and differentiation. We have previously reported that GAR-3 activates ERK1/2 via phospholipase C and protein kinase C, presumably through pertussis toxin (PTX)-insensitive Gq proteins, in Chinese hamster ovary (CHO) cells. Here we provide evidence that GAR-3 also activates ERK1/2 through PTX-sensitive G proteins, phosphatidylinositol 3-kinase (PI 3-kinase), and Src family kinases in CHO cells. We further show that in human embryonic kidney (HEK293) cells, epidermal growth factor receptor and Ras are required for efficient ERK1/2 activation by GAR-3. Taken together, our data indicate that GAR-3 evokes ERK1/2 activation through multiple signaling pathways in cultured mammalian cells.

Fucus evanescens fucoidan의 matrix metalloproteinase-1 promoter, mRNA, 단백질 발현과 신호전달경로에 미치는 효과 (Effect of Fucus evanescens Fucoidan on Expression of Matrix Metalloproteinase-1 Promoter, mRNA, Protein and Signal Pathway)

  • 구미정;정지원;이명숙;조병규;이순례;이혜숙;;;;이용환
    • 생명과학회지
    • /
    • 제20권11호
    • /
    • pp.1603-1610
    • /
    • 2010
  • Fucoidan은 갈조류의 세포벽에 존재하는 황산화 다당류이다. 본 연구에서는 자외선 B를 인체각질형성세포에 조사하여 matrix metalloproteinase-1 (MMP-1)을 발현 시킨 후 Fucus evanescens fucoidan이 MMP-1 promoter, mRNA, 단백 발현과 mitogen-activated protein kinases (MAPKs)의 인산화에 미치는 영향을 확인하고자 하였다. 자외선 B에 의해 생성된 MMP-1의 promoter activity와 mRNA, 단백 발현은 fucoidan $10\;{\mu}g/ml$$100\;{\mu}g/ml$를 투여하였을 때 fucoidan을 투여하지 않고 자외선만 조사한 군에 비하여 유의하게 억제되었다. 그리고 F. evanescens fucoidan은 extracellular signal regulated kinase (ERK)의 활성은 현저히 억제시켰으나 c-JUN N-terminal kinase (JNK)와 p38의 활성에 미치는 영향은 약하였다. 따라서 이 연구결과들은 F. evanescens fucoidan이 피부 광노화의 예방과 치료에 도움이 될 가능성을 확인할 수 있었다.