• Title/Summary/Keyword: Extracellular phosphorylation

Search Result 352, Processing Time 0.032 seconds

Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells

  • Vu, Thom Thi;Dieterich, Peter;Vu, Thu Thi;Deussen, Andreas
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.345-356
    • /
    • 2019
  • Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, $100{\mu}M$) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to $50{\mu}M$. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated $Ca^{2+}$-transient. This effect was preserved in the presence of BAPTA (10 and $20{\mu}M$) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane ($75{\mu}M$) to inhibit store-operated calcium channel or thapsigargin ($2{\mu}M$) to delete calcium store. In addition, DHA ($12{\mu}M$) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a $Ca^{2+}$ activated mode to a preferentially controlled phosphorylation mode.

Inhibitory Effect of Kaempferol on Apoptosis Induced by Phorbol Ester via the Reduction of ROS in Normal Human Dermal Fibroblast

  • Park, Su-Ji;Lee, Sei-Jung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.219-219
    • /
    • 2020
  • Kaempferol (3,4',5,7-tetrahydroxyflavone), a flavonoid found in beans, broccoli, garlic, etc., has been used in natural medicine as an anti-inflammatory and antioxidant. This experiment was carried out to evaluate the anti-apoptotic effect of kaempferol in 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated Normal Human Dermal Fibroblast (NHDF). Kaempferol inhibited the production of intracellular Reactive Oxygen Species (ROS) induced by TPA in NHDF. Kaempferol significantly blocks the phosphorylation of extracellular signal-regulated kinase responsible for the activation of nuclear factor-kappa B. In addition, kaempferol significantly attenuated the expression of Bax and cleaved caspase-3 as regulated by the phosphorylation of nuclear factor-kappa B during its blockage of TPA-induced apoptotic cell death. These findings suggest that kaempferol protects the apoptotic signaling pathway induced by TPA through modulating intracellular ROS in NHDF.

  • PDF

Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle

  • Lee, Hyun;Kim, Seung-Hyeob;Lee, Jae-Seon;Yang, Yun-Hee;Nam, Jwa-Min;Kim, Bong-Woo;Ko, Young-Gyu
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.116-121
    • /
    • 2016
  • Although proteomic analyses have revealed the presence of mitochondrial oxidative phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no in-depth evaluations of the presence or function of OXPHOS I-V in the plasma membrane. Here, we demonstrate the in situ localization of OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by confocal and total internal resonance fluorescence (TIRF) microscopy. Based on these data, we conclude that a portion of OXPHOS complexes is localized in the sarcolemma of skeletal muscle and may have non-canonical functions.

Citrus unshiu Water Extract Inhibits Trypsin-induced $TNF-{\alpha}$ and Tryptase Productions by Blocking the ERK Phosphorylation and Trypsin Activity

  • Kang, Ok-Hwa;Kim, Dae-Ki;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.211-216
    • /
    • 2004
  • Citrus unshiu (Rutaceae) has long been known as an anti-inflammatory and anti-allergic agent. In the present study, the inhibitory effect of CUWE (Citus unshiu water extract) on the production of $TNF-{\alpha}$ and tryptase was examined. In addition, a possible mechanism for the inhibition of trypsin-stimulated human leukemic mast cell-1 (HMC- 1 ) activation was determined. To do so, $TNF-{\alpha}$ production from the HMC-1 cells that were stimulated by trypsin (100 nM) in the presence or absence of CUWE $(10,\;100,\;and\;100\;{\mu}g/ml)$ was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-PCR. The tryptase production was evaluated by reverse transcription-PCR. Extracellular signal-regulated kinase (ERK) activation was analyzed by Western blot. Trypsin activity was measured by using Bz-DL-Arg-p-nitroanilide (BAPNA) as substrate. Results showed that the CUWE inhibited production of both $TNF-{\alpha}$ and tryptase from the trypsin-stimulated HMC-1 in a dose-dependent manner. The CUWE a1so inhibited the ERK phosphorylation and trysin activity. These results indicate that the CUWE had an inhibitory effect on $TNF-{\alpha}$ and the tryptase productions by blocking the ERK phosphorylation and trypsin activity.

MAP Kinase is Activated dring the Maturation of Porcine Oocytes

  • Chung, Ki-Hwa;Kim, Chul-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1069-1075
    • /
    • 2004
  • In an attempt to evaluate the function of MAP kinase in porcine oocytes and to develop a method of the assessment of its activity, myelin basic protein (MBP) was used as a substrate to detect the MAP kinase activity of porcine oocytes which had undergone maturation in vitro. The existence of MAP kinase and MAP kinase kinase (MAPKK) was verified in immature porcine germinal vesicle (GV) oocytes at 0 h culture via Western blotting. Porcine oocytes exhibited a low level of MAP kinase activity during the first 20 h of culture, which increased at 25 h, during which time a breakdown in the nuclear membrane occurred. Significantly higher increases (p<0.05) of MAP kinase activity were detected at 30 h of culture. Using the gel phosphorylation method, MBP was phosphorylated at two positions corresponding to mammalian MAP kinase-extracellular signal-regulated kinase (ERK 1) (44 kDa) and ERK 2 (42 kDa). The absolute levels of those proteins did not increase during 40 h of culture, suggesting that the detected increase in MAP kinase activity was the result of phosphorylation rather than changes in the total amount of protein. MAPKK and MAP kinase were dephosphorylated in first-stage (MI) meiotic oocytes by the addition of cycloheximide, a protein synthesis inhibitor. These results of this study indicate that the MAP kinase cascade does exists in porcine oocytes and that its activation leads to oocyte maturation.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Effect of Rehmannia glutinosa on Phosphorylation of ERK and CREB in Acute Cocaine-treated Rats (건지황의 급성코카인 투여에 의한 ERK, CREB 인산화에 미치는 효과)

  • Kwon, Ki-Won;Jang, Eun-Young;Im, Chae-Kwang;Yang, Chae-Ha;Kim, Kwang-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.281-286
    • /
    • 2012
  • The present study was designed to investigate the effect of Rehmannia glutinosa on phosphorylation of extracellular signal-regulated kinase(ERK) and cAMP response element-binding protein(CREB) in the acute cocaine-treated rats. Rats orally received vehicle or extract of Rehmannia glutinosa 1 h prior to saline (1 ml/kg, i.p.) or cocaine hydrochloride (20 mg/kg, i.p.) treatment. Rats were sacrificed 15 min after a single intraperitoneal injection of saline or cocaine. Rehmannia glutinosa at dose of 50 mg/kg significantly decreased phosphorylation of ERK, CREB and Elk-1 in the nucleus accumbens and striatum of the cocaine-treated rat brain by immunocytochemistry. These results suggest that Rehmannia glutinosa may contribute to the effects of cocaine on gene expression and on behaviors.

Effect of Puerariae Radix Ethanol Extract on the Proliferation of Human Dermal Papilla Cells (인체 모유두세포의 증식에 미치는 갈근 에탄올추출물의 효과)

  • Park, Seol A;Ko, Kyoung Sook;In, Myoung Hee;Mun, Yeun Ja;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • In this study, we investigated the effect of Puerariae Radix ethanol extracts (EPR). The effect of the EPR on proliferation of human hair dermal papilla cells(HHDPCs) by MTT assay and observed Expression of mechanisms that regulate cell proliferation extracellular signal-regulated kinase(ERK) and Akt by western blot. The results showed EPR increased the proliferation of HHDPCs and up-regulation phosphorylation of ERK and Akt. ERK and Akt increased by EPR inhibited phosphorylation by PD98059 (ERK inhibitor) and LY294002 (Akt inhibitor), and cell proliferation was also inhibited. These results suggested EPR increases the proliferation of HHDPCs through phosphorylation of ERK and Akt, and therefore is a beneficial effect for the alopecia treatment.

Effects of Polyunsaturated Fatty Acids on Intestinal Cell Proliferation

  • Wang, Soo-Gyoung
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.203-208
    • /
    • 1999
  • The effect of the polyunsaterated fatty acids, linoleic acid(LA), arachidonic acid(AA) and conjugated dienoic linoleic acid(CLA) on IEC-6 cells (rat intestinal cell)proliferation and cell transduction have been determined in vitro. IEC-6 cells proliferation was assessed by cell growth and [3H]-thymidine incroporation analysis. At 10 μM concentration , the proliferationof cells supplemented with AA or LA was significantly higher than that of CLA. [3H]-thymidine uptake showed the same results. LA and AA increased [3H]-thymidine uptake more than CLA. The stimulatory effect of LA or AA was even more pronounced in the presence of IGF. Both cell number analysis and [3H]-thymidine incorporation revealed that IEC-6 cell proliferation was influenced differently by exogenous free fatty acids, in which AA or LA stimulated IEC-6 cell proliferation and CLA inhibited it. Tyorosine phosphorylation provides a key switch to regulate celluar acitivity in response to extracellular stimuli. At 20 μM and 10μM, AA with IGF-1 stimulated protein tyrosine phophorylation in IEC-6 cells, but LA's impact was less than that of AA. CLA and CLA with IGF-1 inhibited protein tyrosine phosphorylation in IEC-6 cells. These results suggest there is a possible correlation between cell proliferation and IGF receptor tyrosine knase activity driven by AA.

  • PDF

In vitro Effect of High Osmolality on Plasma Membrane Activities in the Spermatozoa (In Vitro 고삼투압이 정자 원형질막의 Protein Tyrosine Phosphorylation에 미치는 영향)

  • 오영근;장재호;최인호;정노팔;신형철;곽병주
    • Biomedical Science Letters
    • /
    • v.6 no.4
    • /
    • pp.237-244
    • /
    • 2000
  • It has been reported that plasma membrane activity of the spermatozoa may be susceptible to be influenced by extracellular osmolality and such membranous changes involve infracellular molecular changes, special regard to the structure of membranous lipids, and the accompanying ion-channel of which are closely related with their fluidity of $Ca^{2+}$ and HCO$^{-}_{3}$. It is of common recognition that a certain kind of sterol acceptor player an important to induce lipid fluctuation of the sperm plasma membrane which have been influenced by BSA administration and came in effect to outflow of cholesterol from the spermatozoa and resulted in changes of ionic fluidity to facilitate adenylyl cyclase, and to induce protein tyrosine phosphorylation by increase of cAMP and activation of PKA. Thus it seems likely that an augmentation of the acrosomal reaction is closely related with protein tyrosine phosphorylation. The following experimental results were obtained in the present study; Under the high osmolality conditions, the spermatozoa motility declined significantly and the structural change of the plasma membrane diminished to confirm that the response degrees to the osmolality depended upon the water transfer volume through the plasma membrane and the changes of cellular volume. Those experimental results suggest that a physiological parameter such as low temperature condition played an important role for presentation of spermatozoa and that inducement of spermatozoa activation for reinforcement of protein tyrosine phosphorylation. On the other hand, it seemed likely that the BSA administration as one of sterol accepters might represent a key role also under the high osmolality condition and their result also suggests that osmolality change, special regard to high osmolality condition may play an important role also in the processes of signal transmission.

  • PDF