• Title/Summary/Keyword: Extracellular Superoxide Dismutase

Search Result 39, Processing Time 0.025 seconds

How Extracellular Reactive Oxygen Species Reach Their Intracellular Targets in Plants

  • Jinsu Lee;Minsoo Han;Yesol Shin;Jung-Min Lee;Geon Heo;Yuree Lee
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.329-336
    • /
    • 2023
  • Reactive oxygen species (ROS) serve as secondary messengers that regulate various developmental and signal transduction processes, with ROS primarily generated by NADPH OXIDASEs (referred to as RESPIRATORY BURST OXIDASE HOMOLOGs [RBOHs] in plants). However, the types and locations of ROS produced by RBOHs are different from those expected to mediate intracellular signaling. RBOHs produce O2•- rather than H2O2 which is relatively long-lived and able to diffuse through membranes, and this production occurs outside the cell instead of in the cytoplasm, where signaling cascades occur. A widely accepted model explaining this discrepancy proposes that RBOH-produced extracellular O2•- is converted to H2O2 by superoxide dismutase and then imported by aquaporins to reach its cytoplasmic targets. However, this model does not explain how the specificity of ROS targeting is ensured while minimizing unnecessary damage during the bulk translocation of extracellular ROS (eROS). An increasing number of studies have provided clues about eROS action mechanisms, revealing various mechanisms for eROS perception in the apoplast, crosstalk between eROS and reactive nitrogen species, and the contribution of intracellular organelles to cytoplasmic ROS bursts. In this review, we summarize these recent advances, highlight the mechanisms underlying eROS action, and provide an overview of the routes by which eROS-induced changes reach the intracellular space.

Effects of Oxygen Free Radicals on Extracellular Glutamate Accumulation in Cultured Cells

  • Shin, Chang-Sik;Oh, Seikwan;Lee, Myung-Koo;Lee, Myung-Koo;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.132-136
    • /
    • 1996
  • Exogenously applied oxygen free radical generating agent, pyrogallol, highly elevated extracellular glutamate accumulation and augmented N-methyl-D-aspartate (NMDA)-induced glutamate accumulation in cerebellar granule neuronal cells, but did not in astrocytes. Superoxide dismutase remarkably decreased the pyrogallol-induced glutamate accumulation, but either NMDA or kainate antagonists did not. In addition, pyrogallol did not affect the NMDAinduced intracellular calcium elevation. Pyrogallol partially blocked glutamate uptake into astrocytes. These results suggest that oxygen free radicals elevate extracellular glutamate accumulation by stimulating the release of glutamate as well as blocking the glutamate uptake.

  • PDF

Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking

  • Agrahari, Gaurav;Sah, Shyam Kishor;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.344-349
    • /
    • 2018
  • Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cell-based therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvation-induced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signal-regulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy.

Thimerosal generates superoxide anion by activating NADPH oxidase: a mechanism of thimerosal-induced calcium release

  • Kim, Eui-Kyung;Ryu, Sung-Ho;Suh, Pann-Ghill
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.229-235
    • /
    • 2002
  • Thimerosal, a widely used preservative, has been well known to induce intracellular calcium mobilization in various cell types. However, the mechanism of its calcium mobilization is not clearly understood yet. For studying the mechanism of thimerosal-mediated calcium release, we have used HL60 cells in calcium-free Lockes solution that has no extracellular calcium. Thimerosal significantly reduced the lag period of initial calcium release whereas it enhanced the rate and magnitude of the calcium release in a dose-dependent manner. At the same time, we found that thimerosal generated superoxide anion by activating NADPH oxidase in dose- and time-dependent manner. Interestingly, the kinetics and the dosedependency of superoxide anion generation were very similar to those of intracellular calcium mobilization. In inhibitors study, the thimerosal-induced superoxide anion generation was significantly suppressed by DMSO as well as superoxide dismutase but not by genistein or EGTA. Surprisingly, the pretreatment with N-Acetyl-$_{L}$-Cysteine blocked almost completely the thimerosal-induced calcium increase, indicating that ROS playa key role in the calcium mobilization. The present results suggest that thimerosal-induced calcium mobilization is possibly mediated by the activation of NADPH oxidase and subsequent ROS generation.n.

  • PDF

Attenuation of ROS Generation by KCNE1 Genes in Cisplatin-treated Auditory Cells

  • Kim, Eun Sook;Park, Sang-Ho;Park, Raekil
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.3
    • /
    • pp.114-119
    • /
    • 2013
  • Potassium is essential for the proper functioning of the ears. The inner ear's endolymph differs from all other extracellular fluids (in its positive potential) and in the ionic compositions in the various parts of the endolymphatic space. Ion concentration of the endolymph is 150 mM of potassium, which is comparable to the concentrations in other organs. Cisplatin (cis-diamminedichloroplatinum II: CDDP) is one of the most effective anticancer drugs, widely used against various tumors. However, its clinical use is limited by the onset of severe side effects, including ototoxicity and nephrotoxicity. For ototoxicity, a number of evidences in cytotoxic mechanism of cisplatin, including perturbation of redox status, increase in lipid peroxydation, and formation of DNA adduct, have been suggested. Therefore, in this study, the author investigated the relationship between the potassium ions on cisplatin-induced cytotoxicity in HEI-OC1 cells associated with reactive oxygen species (ROS). KCNE1 gene expression by the concentration of intracellular potassium appeared in the plasma membrane and increased the concentration of intracellular potassium. Cisplatin decreased the viability of HEI-OC1 cells, but the KCNE1 gene increased. Also, the KCNE1 gene significantly suppressed generation of intracellular ROS by cisplatin. Western blot analysis showed that the KCNE1 gene increased phase II detoxification enzymes markers such as superoxide dismutase 1 (SOD1), superoxide dismutase (SOD2), NAD(P)H:quinine oxidoreductases (NQO1), which were associated with the scavenger of ROS. These results suggest that the KCNE1 gene for intracellular potassium concentration ultimately prevents ROS generation from cisplatin and further contributes to protect auditory sensory hair cells from ROS produced by cisplatin.

  • PDF

Production of Human Keratinocyte 14 Promoter Driven EC-SOD Transgenic Mice

  • Kim, Sung-Hyun;Lee, Tae-Hoon;Kim, Kil-Soo;Lee, Eun-Ju;Kim, Myoung-Ok;Park, Jun-Hong;Cho, Kyoung-In;Jung, Boo-Kyung;Kim, Hee-Chul;Hwang, Sol-Ha;Lee, Hoon-Taek;Ryoo, Zae-Young
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.222-222
    • /
    • 2004
  • Superoxide dismutases are key antioxidant enzymes in metabolism of reactive oxygen species. Three different isoforms of SOD exist in mammals. The extracellular SOD (EC-SOD) is the most recently discovered SOD family member. This isoform is a copper- and zinc-containing enzyme like Cu/Zn-SOD and a homotetrameric glycoprotein with a molecular weight of about 165 kDa in mouse. (omitted)

  • PDF

Selective iNOS Inhibition Attenuates Skeletal Muscle Reperfusion Injury (선택적 iNOS 억제에 의한 골격근 재관류 손상의 감소)

  • Park, Jong-Woong;Lee, Kwang-Suk;Kim, Sung-Kon;Park, Jung-Ho;Wang, Joon-Ho;Jeon, Woo-Joo;Lee, Jeong-Il
    • Archives of Reconstructive Microsurgery
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to determine the effects of selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-aminomethyl]benzyl]acetamidine (l400W) on the reperfused cremaster muscle. The extracellular superoxide dismutase knockout ($EC-SOD^{-/-}$) mice was used to make the experimental window for ischemia-reperfusion injury. The muscle was exposed to 4.5 h of ischemia followed by 90 min of reperfusion and the mice received either 3 mg/kg of 1400W or the same amount of phosphate buffered saline (PBS) subcutaneously at 10 min before the start of reperfusion. The results showed that 1400W treatment markedly improved the recovery of the vessel diameter and blood flow in the reperfused cremaster muscle compared to that of PBS group. Histological examination showed reduced edema in the interstitium and muscle fiber, and reduced nitrotyrosine formation (a marker of total peroxinitrite ($ONOO^-$) in 1400W-treated muscle compared to PBS. Our results suggest that iNOS and $ONOO^-$ products are involved in skeletal muscle I/R injury. Reduced I/R injury by using selective inhibition of iNOS is perhaps via limiting cytotoxic $ONOO^-$ generation, a reaction product of nitric oxide (NO) and superoxide anion ($O_2^-$). Thus, inhibition of iNOS appears to be a good treatment strategy in reducing clinical I/R injury.

  • PDF

Evaluation of Zinc and Copper Status in Korean College Women (일부 여대생의 구리와 아연 영양상태 평가)

  • 김정혜
    • Journal of Nutrition and Health
    • /
    • v.32 no.3
    • /
    • pp.277-286
    • /
    • 1999
  • This study was conducted to assess dietary intake and nutritional status of zinc and copper in Korean college women. Dietary survey was conducted by 24-hour recall method and fasting serum samples were collected from 111 apparently healthy subjects. Intake levels of zinc and copper were calculated using newly developed database for Zn & Cu of Korea food. Serum levels of Zn, Cu and activities of ALP, EC-SOD were measured from fasting serum sample. Mean daily zinc and copper intakes were 6.72mg/day(56.0% RDA) and 1.11mg/day respectively. Mean values of serum ALP activity, zinc and copper concentration were 43.9U/L, 14.8umol/1, 15.5umol/1and these values were mostly within normal range. EC-SOD activitis of the subjects were low and had no correlation with intake or serum levels of Zn, Cu. In conclusion, these results show that zinc and copper intake of Koran college women are lower than those from other counties but higher than those of adults in rural area of Korea. Their serum levels of Zn, Cu, ALP are relatively normal. These results indicate that marginal deficiency of Zn and Cu may be quite prevalent in these subjects but serum indicators measured may not be sensitive enough to detect such marginal deficiency. Further study in needed to develop a biochemical index sensitive enough to evaluate Zn and Cu status.

  • PDF

Biological Characterization of the Chemical Structures of Naturally Occurring Substances with Cytotoxicity

  • Park, Hee-Juhn;Jung, Hyun-Ju;Lee, Kyung-Tae;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • v.12 no.4
    • /
    • pp.175-192
    • /
    • 2006
  • Screening for the cytotoxicity from plant origin is the first stage for anti-cancer drug development. A variety of terpenoids with exomethylene, epoxide, allyl, $\alpha,\beta-unsaturated$ carbonyl, acetylenes, and $\alpha-methylene-\gamma-lactone$ induces apoptosis and/or differentiation as well as cytotoxicity through the ROS signal transduction pathways. These are found among monoterpenes, sesquiterpenes, triterpenes, flavonoids, coumarins, diarylheptanoids, and even organosulfuric compounds. The most essential characteristics of natural cytotoxic substances is to possess the strong electrophilicity that is susceptible to nucleophilic biomolecules in the cell. Thiol-reductants and superoxide dismutase can block or delay apoptosis. Thus, ROS and the resulting cellular redox-potential changes can be parts of the signal transduction pathway during apoptosis. Disturbance of the balance of oxireduction by the pigment of natural quinones also caused the induction of the differentiation and apoptosis. Saponins with the cytotoxicity are restricted to their monodesmosides, rather than to bisdesmosides. Those saponins exhibited calcium ion-mediated apoptosis in addition to cytotoxicity whereas they showed also differentiation without extracellular calcium ion. The properties on cytotoxicity, apoptosis, and differentiation were assumed to depend on resultant oxidative stress to the cells. In this review, we describe a spectrum of cytotoxic compounds with various action mechanisms.

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.