• Title/Summary/Keyword: External radiation Dose rate

Search Result 151, Processing Time 0.027 seconds

Brachytherapy for Head and Neck Cancer (두경부암의 근접방사선 치료)

  • Yoo Seong-Yul
    • Korean Journal of Head & Neck Oncology
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 1991
  • Brachytherapy is a method of radiotherapy in advantage to achieve better local control with minimum radiation toxicity in comparison with external irradiation because radiation dose is distributed according to the inverse square low of gamma-ray emitted from the implanted sources. The main characteristics of brachytherapy are delivering of higher dose to target volume shortening of total treatment period and sparing of normal tissue. Recent development of iridium ribbons for low dose rate implant provides improvement of technology of brachytherapy in terms of safety and efficiency. High dose rate method. on the other hand, is effective to avoid unnecessary expoure of medical personnel.

  • PDF

A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit (연소도이득효과를 적용한 사용후핵연료 수송용기의 방사선원별 차폐영향 분석)

  • Kim, Kyung-O;Kim, Soon-Young;Ko, Jae-Hoon;Lee, Gang-Ug;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source ($^{60}Co$ radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

A Study on Retrospective of External Radiation Exposure Dose by Optically Stimulated Luminescence of Smart Chip Card (스마트칩 카드을 이용한 광 자극 발광 특성 연구)

  • Park, Sang-Won;Yoo, Se-Jong
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Radiation is used for various purposes such as cancer therapy, research of industrial and drugs. However, in case of radiation accidents such as terrorism, collapsing nuclear plant by natural disasters like Fukushima in 2011, very high radiation does expose to human and could lead to death. For this reason, many people are concerning about radiation exposures. Therefore, assessment and research of retrospective radiation dose to human by various path is an necessary task to be continuously developed. Radiation exposure for workers in radiation fields can be generally measured using a personal exposure dosimeter such as TLD, OSLD. However, general people can't be measured radiation doses when they are exposed to radiation. And even if radiation fields workers, when they do not in possession personal dosimeter, they also can't be measured exposure dose immediately. In this study, we conduct retrospective research on reconstruction of dose after exposure by using smart chip card of personal items through Optically Stimulated Luminescence (OSL). The OSL signal of smart chip card shows linear response from 0.06 Gy to 15 Gy and results of fading rate 45 %, 48% for 24 and 48 hours due to the natural emission of radiation in sample, respectively. The minimum detectable limit (MDD) was 0.38 mGy. This values are expected to use as correction values for reconstruction of exposure dose.

Development of Radiation Dose Assessment Algorithm for Arbitrary Geometry Radiation Source Based on Point-kernel Method (Point-kernel 방법론 기반 임의 형태 방사선원에 대한 외부피폭 방사선량 평가 알고리즘 개발)

  • Ju Young Kim;Min Seong Kim;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.275-282
    • /
    • 2023
  • Workers in nuclear power plants are likely to be exposed to radiation from various geometrical sources. In order to evaluate the exposure level, the point-kernel method can be utilized. In order to perform a dose assessment based on this method, the radiation source should be divided into point sources, and the number of divisions should be set by the evaluator. However, for the general public, there may be difficulties in selecting the appropriate number of divisions and performing an evaluation. Therefore, the purpose of this study is to develop an algorithm for dose assessment for arbitrary shaped sources based on the point-kernel method. For this purpose, the point-kernel method was analyzed and the main factors for the dose assessment were selected. Subsequently, based on the analyzed methodology, a dose assessment algorithm for arbitrary shaped sources was developed. Lastly, the developed algorithm was verified using Microshield. The dose assessment procedure of the developed algorithm consisted of 1) boundary space setting step, 2) source grid division step, 3) the set of point sources generation step, and 4) dose assessment step. In the boundary space setting step, the boundaries of the space occupied by the sources are set. In the grid division step, the boundary space is divided into several grids. In the set of point sources generation step, the coordinates of the point sources are set by considering the proportion of sources occupying each grid. Finally, in the dose assessment step, the results of the dose assessments for each point source are summed up to derive the dose rate. In order to verify the developed algorithm, the exposure scenario was established based on the standard exposure scenario presented by the American National Standards Institute. The results of the evaluation with the developed algorithm and Microshield were compare. The results of the evaluation with the developed algorithm showed a range of 1.99×10-1~9.74×10-1 μSv hr-1, depending on the distance and the error between the results of the developed algorithm and Microshield was about 0.48~6.93%. The error was attributed to the difference in the number of point sources and point source distribution between the developed algorithm and the Microshield. The results of this study can be utilized for external exposure radiation dose assessments based on the point-kernel method.

Intraluminal High-Dose-Rate Brachytherapy for the Tumors of Gastrointestinal Tract (위장관 종양의 고선량율 강내 방사선치료)

  • Choi Byung Ock;Choi Ihl Bhong;Chung Su Mi;Kim In Ah;Choi Myoung Gyu;Chang Suk Kyun;Shinn Kyeong Sub
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 1995
  • Purpose : Intraluminal high dose rate brachytherapy is an accepted treatment for the tumors of GI tract. However, there is only some limited clinical data for intraluminal high dose rate brachytherapy for the tumors of GI tract. Materials and Methods : Between February 1991 and July 1993, 18 Patients who have the tumors of GI tract (esophageal cancer-8 cases, rectal cancer-10 cases) were treated with high dose rate Iridium-192 afterloading system (Microselectron-HDR, Nucletron CO, Netherland) at the department of therapeutic radiology, St. Mary's hospital, Catholic university medical college. Age range was 47-87 years with a mean a9e 71 years. All patients were treated with intraluminal high dose rate brachytherapy within two weeks after conventional external radiation therapy and received 3-5 Gy/fraction 3-4 times per week to a total dose 12-20 Gy (mean 17 Gy). Standard fractionation and conventional dose were delivered for external radiation therapy. Total dose of external radiation therapy ranged 41.4-59.4 Gy (mean 49.6 Gy). Median follow up was 19 months Results : The analysis was based on 18 patients, The complete response and partial response in esophageal cancer was similar (38%). Two year rates for survival and median survival were 13% and 10 months, respectively. Among 10 patients of rectal cancers, partial response was obtained in 6 patients (60%). There was no complete response in the patients with rectal cancer, but good palliative results were achieved in all patients. Conclusion : Although the number of patients was not large and the follow-up period was relatively short, these findings suggested that intraluminal high dose rate brachytherapy could be useful in the treatment of the patients with advanced tumors of GI tract.

  • PDF

Evaluation of Caregivers' Exposed Dose and Patients' External Dose Rate for Radioactive Iodine (I-131) Therapy Administration in Isolated Ward (방사성요오드(I-131) 격리병실 치료 관리를 위한 환자의 체외방사선량률과 상주 보호자의 피폭선량평가)

  • Kang, Seok-Jin;Lee, Doo-Hyeon;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In this study, the radiation dose rate was measured by time and distance and evaluated whether radiation dose rate was suitable for domestic and international discharge criteria. In addition, the radiation dose emitted from the patient was measured with a glass dosimeter to evaluate the exposure dose if the caregiver stays in the isolated ward by placing a humanoid phantom instead of the caregiver at a distance of 1 m from the patient, on the second day of treatment. After 23 hours of isolation, the radiation dose rates at a distance of 1 m were 20.54 ± 6.21 µSv/h at 2.96 GBq administration and 27.94 ± 12.33 µSv/h at 3.70 GBq administration. The radiation dose rates at a distance of 1 m were 25.90 ± 2.21 µSv/h when 2.96 GBq was administered and 34.22 ± 10.06 µSv/h when 3.70 GBq was administered after 18 hours of isolation. However, if the isolation period is short may cause unnecessary radiation exposure to the third person. The reading of the attached dosimeter from the morning of the second day of treatment until removal was 0.01 to 0.95 mSv, which is a surface dose determined by the International Commission on Radiation Units and Measurements. And the depth dose was 0.01 to 0.99 mSv. On the second day of treatment, even if the patient caregivers stayed in the isolation ward, the exposure dose of the patient family did not exceed the effective dose limit of 5 mSv recommended by the ICRP and NCRP.

Impact of Treatment Time on Chemoradiotherapy in Locally Advanced Cervical Carcinoma

  • Pathy, Sushmita;Kumar, Lalit;Pandey, Ravindra Mohan;Upadhyay, Ashish;Roy, Soumyajit;Dadhwal, Vatsla;Madan, Renu;Chander, Subhash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5075-5079
    • /
    • 2015
  • Background: Adverse effects of treatment prolongation beyond 8 weeks with radiotherapy for cervical cancer have been established. Clinical data also show that cisplatin increases the biologically effective dose of radiotherapy. However, there are no data on the effect of overall treatment time in patients with locally advanced cervical cancer treated with concomitant chemo-radiotherapy (CCRT) in an Indian population. The present study concerned the feasibility of concurrent chemotherapy and interspacing brachytherapy during the course of external radiotherapy to reduce the overall treatment time and compare the normal tissue toxicity and loco-regional control with a conventional schedule. Materials and Methods: Between January 2009 and March 2012 fifty patients registered in the Gynaecologic Oncology Clinic of Institute Rotary Cancer Hospital with locally advanced cervical cancer (FIGO stage IIB-IIIB) were enrolled. The patients were randomly allocated to treatment arms based on a computer generated random number. Arm I (n=25) treatment consisted of irradiation of the whole pelvis to a dose of 50 Gy in 27 fractions, and weekly cisplatin $40mg/m^2$. High dose rate intra-cavitary brachytherapy (HDR-ICBT) was performed after one week of completion of external beam radiotherapy (EBRT). The prescribed dose for each session was 7Gy to point A for three insertions at one week intervals. Arm II (n=25) treatment consisted of irradiation of the whole pelvis to a dose of 50 Gy in 27 fractions. Mention HDR-ICBT ICRT was performed after 40Gy and 7Gy was delivered to point A for three insertions (days 23, 30, 37) at one week intervals. Cisplatin $20mg/m^2/day$ was administered from D1-5 and D24-28. Overall treatment time was taken from first day of EBRT to last day of HDR brachytherapy. The overall loco-regional response rate (ORR) was determined at 3 and 6 months. Results: A total of 46 patients completed the planned treatment. The overall treatment times in arm I and arm II were $65{\pm}12$ and $48{\pm}4$ days, respectively (p=0.001). At three and six months of follow-up the ORR for arm I was 96% while that for arm II was 88%. No statistically significant difference was apparent between the two arms. The overall rate of grade ${\geq}3$ toxicity was numerically higher in arm I (n=7) than in arm II (n=4) though statistical significance was not reached. None of the predefined prognostic factors like age, performance status, baseline haemoglobin level, tumour size, lymph node involvement, stage or histopathological subtype showed any impact on outcome. Conclusions: In the setting of concurrent chemoradiotherapy a shorter treatment schedule of 48 days may be feasible by interspacing brachytherapy during external irradiation. The response rates and toxicities were comparable.

The Study of Radiation Exposed dose According to 131I Radiation Isotope Therapy (131I 방사성 동위원소 치료에 따른 피폭 선량 연구)

  • Chang, Boseok;Yu, Seung-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 2019
  • The purpose of this study is to measure the (air dose rate of radiation dose) the discharged patient who was administrated high dose $^{131}I$ treatment, and to predict exposure radiation dose in public person. The dosimetric evaluation was performed according to the distance and angle using three copper rings in 30 patients who were treated with over 200mCi high dose Iodine therapy. The two observer were measured using a GM surverymeter with 8 point azimuth angle and three difference distance 50, 100, 150cm for precise radion dose measurement. We set up three predictive simulations to calculate the exposure dose based on this data. The most highest radiation dose rate was showed measuring angle $0^{\circ}$ at the height of 1m. The each distance average dose rate was used the azimuth angle average value of radiation dose rate. The maximum values of the external radiation dose rate depending on the distance were $214{\pm}16.5$, $59{\pm}9.1$ and $38{\pm}5.8{\mu}Sv/h$ at 50, 100, 150cm, respectively. If high dose Iodine treatment patient moves 5 hours using public transportation, an unspecified person in a side seat at 50cm is exposed 1.14 mSv radiation dose. A person who cares for 4days at a distance of 1 meter from a patient wearing a urine bag receives a maximum radiation dose of 6.5mSv. The maximum dose of radiation that a guardian can receive is 1.08mSv at a distance of 1.5m for 7days. The annual radiation dose limit is exceeded in a short time when applied the our developed radiation dose predictive modeling on the general public person who was around the patients with Iodine therapy. This study can be helpful in suggesting a reasonable guideline of the general public person protection system after discharge of high dose Iodine administered patients.

Evaluation of Radiation Effect on Damage to Nuclear Fuel of Spent Fuel Transport CASK due to Sabotage Attack (사보타주 공격으로 인한 사용후핵연료 운반용기 격납 실패시 핵연료 손상에 따른 방사선 영향 평가)

  • Ki Ho Park;Jong Sung Kim;Gun il Cha;Chang Je Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2022
  • The purpose of this study is to evaluate the radiation effect on damage when the external shield of the spent nuclear fuel transport cask is damaged due to impact as the cause of an unexpected accident. The neutron and gamma-ray intensities and spectra are calculated using the ORIGEN-Arp module in the SCALE 6.2.4 code package(1) and then using MCNP6.2(2) code calculate the dose rate. In order to evaluate the radiation dose according to the size of damage caused by external impact, various sized holes of 0.3~13.7% are assumed in the outer shield of the cask to evaluate the sensitivity to the dose. In the case of radiation source leakage, damage to the nuclear fuel assembly is assumed to be up to 6% based on overseas test cases. When only the outer shield is damaged, the maximum surface dose is calculated as 3.12E+03 mSv/hr. However, if the radiation source is leaked due to damage to the nuclear fuel assembly, it becomes 7.00E+05 mSv/hr which is about 200 times greater than the former case.

High Dose Rate Interstitial Brachytherapy in Soft Tissue Sarcomas : Technical Aspect (연부조직종양에서 고선량율 조직내 방사선치료: 기술적 측면에서의 고찰)

  • Chun Mison;Kang Seunghee;Kim Byoung-Suck;Oh Young-Taek
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • Purpose : To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy Materials and Methods : Between May 1995 and Dec. 1997, ten patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1 ~l.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of high dose rate, iridium-192 implant which delivered 12~15 Gy to 1 cm distance from the center of source axis with 2~2.5 Gy/fraction, twice a day, starting on 6th day after the surgery, Within one month after the surgery, total dose of 50~55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. Results : All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12~41 months), no local recurrences were observed. And there was no severe form of chronic complication (RTOGIEORTC grade 3 or 4). Conclusion : The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  • PDF