• Title/Summary/Keyword: External disturbances

Search Result 383, Processing Time 0.026 seconds

Analysis of the effect of flow-induced crystallization on the stability of low-speed spinning using the linear stability method

  • Shin Dong Myeong;Lee Joo Sung;Jung Hyun Wook;Hyun Jae Chun
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2005
  • The stability of low-speed spinning process exhibiting spinline flow-induced crystallization (FIC) with no neck-like spinline deformation has been investigated using the method of linear stability analysis. Effects of various process conditions such as fluid viscoelasticity and the spinline cooling on the spinning stability have been found closely related to the development of the spinline crystallinity. It also has been found that the FIC makes the system less stable or more unstable than no FIC cases when the spinline crystallinity reaches its maximum possible value, whereas the FIC generally stabilizes the system if the crystallinity doesn't reach its maximum value on the spinline. It is believed that the destabilizing effect of the FIC on low-speed spinning when the crystallinity is fully developed on the spinline is due to the reduction of the real spinning length available for deformation on the spinline. On the other hand, the increased spinline tension caused by the FIC when the maximum crystallinity is not reached on the spinline and thus no reduction in the spinning length occurs, makes the sensitivity of spinline variables to external disturbances smaller and hence stabilizes the system. These linear stability results are consistent with the findings by nonlinear transient simulation, as first reported by Lee et al. (2005b).

A Preliminary Trophic Flow Model for Gwangyang Bay, Korea (광양만 예비 영양류 모형)

  • Kang, Yun-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.184-195
    • /
    • 2005
  • A preliminary quantitative model of the trophic structure in Gwangyang bay, Korea was obtained using ECOPATH and data from relevant studies to date in the region. The model integrates and analyzes biomass, food spectrum, trophic interactions and the key trophic pathways of the system. The bay model comprises 9 groups of benthic primary producer, phytoplankton, zooplankton, benthos, bivalve, pelagic fish, demersal fish and piscivorous fish. The total system throughput was estimated at $2.4\;kgWW/m^2/yr$, including a consumption of $41\%$, exports of $9\%$, respiratory flows of $24\%$ and flows into detritus of $26\%$. All of which originate from primary producers measured at $52\%$ and detritus of $48\%$. The total biomass was seen to be high compared to the levels of Somme, Delaware, Chesapeake Bays and Seine Estuary. This seems to be possibly due to artificial bivalve aquaculture and overestimation of benthos and benthic primary producer groups. The deviation can be calibrated by neglecting aquaculture and decreasing the habitat area for the groups. The trophic network of the bay shows a low level of recycling and organization as indicated by Finn's cycling index $3.3\%$, Ascendancy $3.1\;kgC/m^2/yr$ bits, Capacity $5.1\;kgC/m^2/yr$ bits and Redundancy $2.2\;kgC/m^2/yr$ bits. A high relative ascendancy of $62\%$ and a low internal relative ascendancy of $18\%$ indicate the system is not fully organized and stable towards disturbances, depending upon external connections. Although the model should be continuously provided with field data and calibrated further in depth, this study is the first trophic model applied to the region. The model can be a useful tool to understand the ecosystem in a quantitative manner.

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 이용한 리니어 모터의 위치제어)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.369-374
    • /
    • 2010
  • Linear motors are easily affected by load disturbances, force ripples, friction, and parameter variations because there are no mechanical transmissions that can reduce the effects of model uncertainties and external disturbance. In this study, a nonlinear adaptive controller to achieve high-speed/high-accuracy position control of a two-axis linear motor is designed. The operation of this controller is based on a cross-coupling algorithm. Nonlinear effects such as friction and force ripples are estimated and compensated for. An enhanced cross-coupling algorithm is proposed for effectively improving the biaxial contour accuracy while achieving closed-loop stability. The proposed controller is evaluated by performing computer simulations.

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.

Intelligent Control of a Virtual Walking Machine for Virtual Reality Interface (가상현실 대화용 가상걸음 장치의 지능제어)

  • Yoon, Jung-Won;Park, Jang-Woo;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • This paper proposes intelligent control of a virtual walking machine that can generate infinite floor for various surfaces and can provide proprioceptive feedback of walking to a user. This machine allows users to participate in a life-like walking experience in virtual environments with various terrains. The controller of the machine is implemented hierarchically, at low-level for robust actuator control, at mid-level fur platform control to compensate the external forces by foot contact, and at high-level control for generating walking trajectory. The high level controller is suggested to generate continuous walking on an infinite floor for various terrains. For the high level control, each independent platform follows a man foot during the swing phase, while the other platform moves back during single stance phase. During double limb support, two platforms manipulate neutral positions to compensate the offset errors generated by velocity changes. This control can, therefore, satisfy natural walking conditions in any direction. Transition phase between the swing and the stance phases is detected by using simple switch sensor system, while human foot motions are sensed by careful calibration with a magnetic motion tracker attached to the shoe. Experimental results of walking simulations at level ground, slope, and stairs, show that with the proposed machine, a general person can walk naturally on various terrains with safety and without any considerable disturbances. This interface can be applied to various areas such as VR navigations, rehabilitation, and gait analysis.

A Sliding Mode Control Scheme for Inverted Pendulum System (슬라이딩 모드 제어기법을 이용한 도립진자 시스템 제어)

  • Han, Sang-Wan;Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1020-1026
    • /
    • 2014
  • A problem of sliding mode control is chattering because of controle input signal included unknown disturbance and nonlinear input parameters. This paper presents a sliding mode controller design to inverted pendulum system. In this paper, a sliding mode control algorithm to reduce a chattering is proposed. The reduction of chattering is accomplished by smoothing function for nonlinear control input. In this method, the dynamic equations of the inverted pendulum is decoupled by considering nonlinear parameters and external disturbances. Therefore, this study is applied to obtain switching control inputs for sliding mode controller. The proposed technique is tested to the control of inverted pendulum through computer simulations. The result shown reduced chattering in control input.

Effect of Disturbance Modeling on IMMU-Based Orientation Estimation Accuracy (교란성분 모델링이 IMMU기반 자세추정 정확성에 미치는 영향)

  • Choi, Mi Jin;Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.783-789
    • /
    • 2017
  • In terms of 3D orientation estimation based on nine-axis IMMU(inertial and magnetic measurement unit), there are two disturbance components decreasing estimation accuracy: one is external acceleration disturbing accelerometer's signals and the other is magnetic disturbance related to magnetometer's signals. In order to minimize effects by these two disturbances, two approaches including switching approach and model-based approach have been suggested and further research comparing these two has also been conducted. Nevertheless, effect of disturbance modeling differences on orientation estimation accuracy in model-based approach has not been studied before. This paper compares the recently reported two orientation estimation algorithms that have difference in disturbance models, in order to investigate the effect of disturbance models on accuracy of IMMU-based orientation estimation under various operating conditions. This research shows that the difference in disturbance models leads to difference in process noise covariance matrix. Consequently, this affected the orientation estimation, i.e., the estimation differences between the algorithms were root mean square errors of $1.35^{\circ}$ in average and $3.63^{\circ}$ in yaw estimation.

Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion (고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.582-590
    • /
    • 2007
  • Nonlinear adaptive control of overhead cranes is investigated for anti-sway trajectory tracking with high-speed hoisting motion. The sway dynamics of two dimensional underactuated overhead cranes is heavily coupled with the trolley acceleration, hoisting rope length, and the hoisting velocity which is an obstacle in the design of decoupling control based anti-sway trajectory tracking control law To cope with this obstacle. we propose a fuzzy nonlinear adaptive anti-sway trajectory tracking control law guaranteeing the uniform ultimate boundedness of the sway dynamics even in the presence of uncertainties in such a way that it cancels the effect of the trolley acceleration and hoisting velocity on the sway dynamics. In particular. system uncertainties, including system parameter uncertainty unmodelled dynamics, and external disturbances, are compensated in an adaptive manner by utilizing fuzzy uncertainty observers. Accordingly, the ultimate bound of the tracking errors and the sway angle decrease to zero when the fuzzy approximation errors decrease to zero. Finally, numerical simulations are performed to confirm the effectiveness of the proposed scheme.

Protection properties of HTS coil charging by rotary HTS flux pump in charging and compensation modes

  • Han, Seunghak;Kim, Ji Hyung;Chae, Yoon Seok;Quach, Huu Luong;Yoon, Yong Soo;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2021
  • The low normal zone propagation velocity (NZPV) of high-temperature superconducting (HTS) tape leads to a quench protection problem in HTS magnet applications. To overcome this limitation, various studies were conducted on HTS coils without turn-to-turn insulation (NI coils) that can achieve self-protection. On the other hand, NI coils have some disadvantages such as slow charging and discharging time. Previously, the HTS coils with turn-to-turn insulation (INS coils) were operated in power supply (PS) driven mode, which requires physical contact with the external PS at room-temperature, not in persistent current mode. When a quench occurs in INS coils, the low NZPV delays quench detection and protection, thereby damaging the coils. However, the rotary HTS flux pump supplies the DC voltage to the superconducting circuit with INS coils in a non-contact manner, which causes the INS coils to operate in a persistent current mode, while enabling quench protection. In this paper, a new protection characteristic of HTS coils is investigated with INS coils charging through the rotary HTS flux pump. To experimentally verify the quench protection characteristic of the INS coil, we investigated the current magnitude of the superconducting circuit through a quench, which was intentionally generated by thermal disturbances in the INS coil under charging or steady state. Our results confirmed the protection characteristic of INS coils using a rotary HTS flux pump.