• 제목/요약/키워드: External disturbances

검색결과 382건 처리시간 0.022초

Sliding Mode Controller with Enhanced Performance Using Time-Varying Surface and Fuzzy Logic

  • Park, Chang-Woo;Park, Soon-Hyung;Park, Mignon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.51-54
    • /
    • 2000
  • In variable structure control algorithm, sliding mode makes the closed loop system insensitive to modelling uncertainties and external disturbances. However due to imperfections in switching, the system trajectory chatters, which is very undesirable. And the insensitivity property of a sliding mode controller is present only when the system is in the sliding mode. To overcome these shortcomings, in this paper, new sliding mode control algorithm using time-varying sliding surface and fuzzy PI structrue is proposed.

  • PDF

Application of Fuzzy Logic to Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.14-19
    • /
    • 1997
  • In this paper, a new fuzzy sliding mode control algorithm is presented for trajectory control of robot manipulators. A fuzzy logic is applied to a sliding mode control algorithm to have the sliding mode gain adjusted continuously through fuzzy logic rules. With this scheme, te stability and the robustness of the proposed fuzzy logic control algorithm are proved and ensured by the sliding mode control law. The fuzzy logic controller requires only a few tuning parameters to adjust. Computer simulation results are given to show that the proposed algorithm can handle uncertain systems with large parameter uncertainties and external disturbances.

  • PDF

제한된 외란하에서의 강인한 이산 시간 모델 추종 적응 제어 (A Robust Discrete-Time Model Reference Adaptive Control in the Presence of Bounded Disturbances)

  • 이호진;함운철;최계근
    • 대한전자공학회논문지
    • /
    • 제25권12호
    • /
    • pp.1618-1624
    • /
    • 1988
  • In this paper, a robust discrete model reference adaptive controller is proposed using a generalized model reference adaptive algorithm for single-input single-output discrete systems. A signal dependent time-varying dead-zone is employed in a generalized adaptive control structure. This adaptive controller is shown to assure the boundedness of the signals of the system even in the presence of bounded external disturbance.

  • PDF

일련의 상호연결된 연속시간 시스템에 대한 비집중적응 제어기의 설계 (Decentralized Adaptive Controller Design for a Class of Interconnected Continuous Systems)

  • 류준;김병연
    • 전자공학회논문지B
    • /
    • 제29B권10호
    • /
    • pp.53-58
    • /
    • 1992
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected linear system composed of a number of single-input single-output subsystems in which outgoing interactions pass through the measurement channel and are subjected to bounded external disturbances. The scheme can treat the unknown strength of interactions as well as uncertainties in subsystem dynamics, and allows for the case when the relative degree of each decoulped subsystem does not exceed two.

  • PDF

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results

가변 설계 파라미터 퍼지 PID 제어기를 이용한 비선형 유압시스템의 위치 제어 (A Position Control of Nonlinear Hydraulic System using Variable Design-Parameter Fuzzy PID Controller)

  • 김인환;김종화;김진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.136-144
    • /
    • 2004
  • In general a hydraulic system which uses a single rod hydraulic as an actuator is modeled as a nonlinear system and reveals uncertain Parameter characteristics such as the density variation of hydraulic oil and is subject to load variations and severe disturbances during operation. A variable design-parameter fuzzy PID controller is adopted to solve these undesirable internal and external problems and its effectiveness is verified through computer simulations for control performance and real time control possibility.

바이너리제어를 이용한 동력설비용 브러시리스 직류전동기의 위치제어 (A Position Control of Brushless DC Motor for Power Installation with Binary Control)

  • 유완식;조규민;김영석
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권4호
    • /
    • pp.55-61
    • /
    • 1995
  • Variable structure control (VSC) can be used for the control of power plants required stability and robustness such as elevator control. It has no overshoot and is insensitive to parameter variations and disturbances in the sliding mode where the system structure is changed with the sliding surface in the center. But in the real system, VSC has a high frequency chattering which has a bad influence upon the control system proformances. In this paper, to alleviate the high frequency chattering, a binary controller (BC) with inertial type external loop is implemented by DSP and applied to position control of brushless DC motor. Binary controller has external loop to generate the continuous control input with the flexible variation of primary loop gain. Thus it has the property of chattering alleviation in addition to advantages of the conventional variable structure control.

  • PDF

수정된 외란관측기를 이용한 광 디스크 드라이브 서보 시스템 (An Optical Disk Drive Servo System Using a Modified Disturbance Observer)

  • 정종일;김무섭;오경환;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.484-491
    • /
    • 2005
  • Using a disturbance observer is effective in enhancing the performance of dynamic system in presence of disturbances. Although various types of disturbance observers have been proposed to improve sensitivity of systems, there exist poor transient responses due to cross-couplings among disturbance observer loops. In this paper, dual disturbance observer (DOB) is proposed to reduce the effects of the cross-couplings. A different type of loop transfer function is proposed for external disturbance observer. While improving the sensitivity function by adding external DOB, it also provides improved complementary sensitivity function. The proposed dual DOB is applied to a commercial optical disk drive tracking system. It is shown that the dual DOB is an effective method in rejecting the effect of disturbance as well as improving the tracking performance.

나노 스테이지에 대한 슬라이딩-모드 제어 기반의 강인 최적 제어기 설계 (Design of Robust Optimal Controller for Nano Stage using Sliding-mode Control)

  • 최인성;최승옥;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.101-103
    • /
    • 2007
  • In this paper. we design a robust optimal controller for ultra-precision positioning system. Generally, it is hard to control the nanometric scale positioning system because of the parameter uncertainties and external disturbances. To solve this problem. we suggest a control algorithm based on the modified sliding-mode control and the LQ control in an augmented system. The augmented system is composed of additional state variables: state estimates and control input in the nominal system. Through comparison with LQ optimal control, it is verified that the proposed control algorithm is more robust to the unexpected parameter variations and external noises.

  • PDF

Immune Algorithm Based Active PID Control for Structure Systems

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1823-1833
    • /
    • 2006
  • An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I-PID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect.