• Title/Summary/Keyword: External disturbances

Search Result 382, Processing Time 0.025 seconds

A Clinical Case Study on the Tinnitus with Sudden Sensorineural Hearing Loss (돌발성 난청을 동반한 이명 환자 1례에 대한 증례보고)

  • Kim, Seok-Ju;Lee, Hyun
    • Journal of Haehwa Medicine
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Tinnitus is noise from ear or head without any external sound stimulation and can cause hearing difficulties, psychologenic disturbances or many difficulties in everyday life. the etiology has yet been discussed and the management is also very difficult. Sensorineural hearing loss is defined as a sudden hearing impairment which was develope over a period of hours to days. I report one tinnitus case which accompanied with sudden sensorineural hearing loss. In the early and acute stage which judged as Dam-Wha, herbal treatment with Tong-myeong-ri-gi-tang was efficacious on the tinnitus. In the convalescent stage and judged as Sin-heo, herbal treatment with Ja-sin-tong-i-tang was efficacious on the tinnitus that accompanied with sudden sensorineural hearing loss.

  • PDF

Tracking Control of a Sampled Nonlinear System via Fuzzy Logic Theory (퍼지제어 이론을 이용한 샘플된 비선형 시스템의 추적제어에 대한 연구)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.69-75
    • /
    • 2003
  • This paper presents a fuzzy logic based approach to tracking control of a sampled nonlinear system. It is assumed that the plant to be controlled is under both the internal uncertainty and the external disturbances. Discrete-time adaptive fuzzy control method is proposed and its parameters are determined by the recently-spolighted convex optimization technique called LMI. Finally, the computer simulation is tarried out to verify the effectiveness of the proposed method.

Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

  • Zhou, Jiajia;Ye, Dingqi;Zhao, Junpeng;He, Dongxu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-293
    • /
    • 2018
  • This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV) using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances.

Adaptive Control of Switched Reluctance Motor Drives under Variable Torque Applications

  • Namazi, Mohammad Masoud;Rashidi, Amir;Koofigar, Hamidreza;Saghaiannejad, Seyed Morteza;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.134-144
    • /
    • 2017
  • This paper presents an adaptive control strategy for the speed control of a four-phase switched reluctance motor (SRM) in automotive applications. The main objective is to minimize the torque ripples, despite the unstructured uncertainties, time-varying parameters and external load disturbances. The bound of perturbations is not required to be known in the developing of the proposed adaptive-based control method. In order to achieve a smooth control effort, some properties are incorporated and the proposed control algorithm is constructed using the Lyapunov theorem where the closed-loop stability and robust tracking are ensured. The effectiveness of the proposed controller in rejecting high perturbed load torque with smooth control effort is verified with comparing of an adaptive sliding mode control (ASMC) and validated with experimental results.

All Stabilizing Disturbance Observer Design for Precise Position Control (정밀 위치제어를 위한 상안정 외란관측기 설계)

  • Suh, Sang-Min;Kim, Ha-Yong;Kim, Kyung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.710-716
    • /
    • 2010
  • This note represents a new disturbance observer to reduce effects of external disturbances. In case of conventional disturbance observers, additional stabilizing filters, so-called Q-filter, should be used because the conventional ones don't guarantee stability. But, the proposed one doesn't need the stabilizing filter, which is a fundamentally different research result from previous methods. Experimental verifications show this approach is realizable and valid to enhance precise positioning.

Microprocessor Implementation of Secondary PID Controller for Motion of SCARA Type Robot (스카라형 로보트의 동작에 관한 2차 PID 제어기의 마이크로프로세서 구현)

  • Park, Il-Young;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.401-404
    • /
    • 1991
  • In this paper, the controllers for the motion of the 2-joint manipulator design two stages: (1) a primary controller that under ideal conditions makes the end-effector track the desired trajectory: (2) a secondary controller that compensates for undesirable deviations of the motion from the disired trajectory caused by external and/or internal disturbances. The secondary contoller is applied to PID control algorithm. and the controllers is actually designed using IBM-PC/AT and 8096 single chip microprocessor.

  • PDF

Performance Improvement for an Electromagnetic Suspension System Using Variable Structure Control (가변 구조 제어를 이용한 상전도 흡인식 자기 부상 시스템의 성능 향상에 관한 연구)

  • Lee, Jeong-Uk;Lee, Sang-Bin;Lee, In-Ho;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2174-2176
    • /
    • 1997
  • The purpose of this paper is to improve tracking performance for an EMS system using variable structure control. To improve current control of characteristics and to reduce chattering, a reaching law is applied. A disturbance observer using sliding observer is designed to compensate the influence of disturbances. This observer compensates modelling uncertainty and steady state error as well as external disturbance. The effectiveness of the proposed control scheme is demonstrated by experiments

  • PDF

Model Following Acceleration Control Strategy for the Robustness Control of DC Servo Position Control Systems (직류서보 위치제어시스템의 강인성 제어를 위한 모델추종 가속도제어기법)

  • Park, Young-Jeen;Cha, Min;You, Young-Suk;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.270-273
    • /
    • 1996
  • A scheme of observer-based MFAC(Model Following Acceleration Control) system is proposed for the robustness control of DC servo position control systems. The proposed system is composed of LMFC, variable structure feedback controller, and reduced-order state observer. As the servo motor is controlled by the acceleration command, the total servo system becomes the acceleration control system. Simulation results show that the proposed system have robust properties against parameter variations and external disturbances.

  • PDF

A Robust Sensorless Vector Control System for Induction Motors

  • Huh Sung-Hoe;Choy Ick;Park Gwi-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.443-447
    • /
    • 2001
  • In this paper, a robust sensorless vector control system for induction motors with a speed estimator and an uncertainty observer is presented. At first, the proposed speed estimator is based on the MRAS(Mode Reference Adaptive System) scheme and constructed with a simple fuzzy logic(FL) approach. The structure of the proposed FL estimator is very simple. The input of the FL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed Secondly, the unmodeled uncertainties such as parametric uncertainties and external load disturbances are modeled by a radial basis function network(RBFN). In the overal speed control system, the control inputs are composed with a norminal control input and a compensated control input, which are from RBFN observer output and the modeling error of the RBFN, repectively. The compensated control input is derived from Lyapunov unction approach. The simulation results are presented to show the validity of the proposed system.

  • PDF

Variable structure controller design for process with time delay

  • Park, Gwi-Tae;Kim, Seok-Jin;Lee, Kee-sang;Song, Myung-Hyun;Kuo, Chun-Ping;Kim, Sung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.406-411
    • /
    • 1993
  • A variable structure control scheme that can be applied to the process with input/output delays are proposed and its control performances are evaluated. The proposed VSCS, which is an output fedback scheme, comprises an integrator for tracking the setpoint and the Smith predictor for compensating the effects of time delay. With The VSCS, the robustness against the parameter variations and external disturbances can be achieved even when the controlled process includes I/O delays. And the desired transient response is obtained by simple adjustment of the coefficients of the switching surface equation.

  • PDF