• Title/Summary/Keyword: External disturbance

Search Result 401, Processing Time 0.027 seconds

Center of Mass Compliance Control of Humanoid Using Disturbance Observer (외란 관측기를 이용한 휴머노이드 무게 중심 유연 동작 제어)

  • Park, Gyeongjae;Kim, Myeong-Ju;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • To operate in real environment, humanoid robots should be able to react to unknown disturbances. To deal with disturbances, various robust control algorithms have been developed for decades. But for collaborative works such as teleoperation system, a compliance control can be the better solution for disturbance reactions. In this paper, a center of mass (CoM) compliance control algorithm for humanoid robots is proposed. The proposed algorithm is based on the state observer and positive feedback of disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations, the performance of the proposed method was demonstrated. Under two types of disturbance conditions, humanoid robot DYROS-JET reacted with compliant motion via the proposed algorithm.

A Robust Speed Controller For Induction Motor Driver Using Fuzzy Logic (퍼지논리를 이용한 유도모터 드라이브의 견실한 속도 제어기)

  • 신위재;이수흠;이팔진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.62-68
    • /
    • 1998
  • In this paper, a speed controller considering the effects of parameter variations and external disturbance for induction motor driver is designed. An proportional plus integral(P1) fuzzy controller is designed to match desired speed tracking specification. Then a robust controller using Fuzzy Weight matrix are designed that in order to reduce the effect of parameter variations caused by external disturbance. The desired speed tracking control performance of the driver is preserved under wide operating range, and also good speed performance is confirmed by the computer simulation.

  • PDF

Control system design for a manipulator under parameter perturbation

  • Shimomoto, Y.;Kisu, H.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.346-349
    • /
    • 1994
  • This paper is concerned with a motion control of a manipulator under parametric uncertainties and external disturbances. The parametric uncertainties are regarded as internally generated disturbances in the manipulator. Based on this idea, we formulate a model reference control problem with desired disturbance attenuation. The solution of this control problem not only reduces the worst-case effect on tracking error due to internal and external disturbances (combined disturbances) as much as possible, but also achieve optimal tracking when perturbations are absent. In order to solve the control problem which is formulated in this paper we reduce it to a constrained minmax cost control problem. A differential game theory is used to treat this constrained minmax cost control problem. The differential game theory leads to a sufficient condition for the global solvability of the model reference control problem with desired disturbance attenuation.

  • PDF

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Robust State Observer for Lipschitz Nonlinear Systems with Time Delay (시간 지연을 갖는 Lipschitz 비선형 시스템의 강인 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1089-1093
    • /
    • 2008
  • This paper presents a robust state observer design for a class of Lipschitz nonlinear systems with time delay and external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level in spite of the existence of time delay. Finally, a numerical example is provided to verify the proposed design method.

Robust Direct Adaptive Fuzzy Controller (강인한 직접 적응 퍼지 제어기)

  • 김용태;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.199-203
    • /
    • 1997
  • In this paper is proposed a new direct adaptive fuzzy controller that dan ve applied for tracking control of a class of uncertain nonlinear SISO systems. It is shown that, in the presence of the perturbations such as fuzzy approximation error and external disturbance, boundedness of all the signals in the system is ensured, while under the assumption of no perturbations, the stability of the overall system in guaranteed. Also, the concept of persistent excitation in the adaptive fuzzy control systems is introduced to guarantee the convergence and the boundedness of adaptation parameter in the proposed controllers. Simulation example shows the effectiveness of the proposed method in the presence of fuzzy approximation error and external disturbance.

  • PDF

Nonlinear frequency Response Analysis of Hydrodynamic Journal Bearing Under External Disturbance (외란을 받는 저널 베어링의 비선형 주파수 응답 해석)

  • 노병후;김경웅
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.68-76
    • /
    • 1999
  • This paper presents the nonlinear characteristics of the oil lubricated hydrodynamic journal bearing. The traditional approach is to characterize the behavior and performance of fluid film hydrodynamic journal bearings by means of linearized bearing analysis. The objective of this paper is to examine the nonlinear characteristics of the journal bearing when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width Reynolds equation at each time step by the solution of the column method. Frequency response function and journal orbit obtained from both linear and nonlinear bearing simulations are compared with each other.

Robust control using Analog Adaptive Resonance Theory

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.93-95
    • /
    • 2006
  • In many control system applications, the system designed must not only satisfy the damping and accuracy specifications, but the control must also yield performance that is robust to external disturbance and parameter variations. We have shown that feedback in conventional control systems has the inherent ability of reducing the effects of external disturbance and parameter variations. Unfortunately, robustness with the conventional feedback configuration is achieved only with a high loop gain, which is normally detrimental to stability. The design of intelligent, autonomous machines to perform tasks that are dull, repetitive, hazardous, or that require skill, strength, or dexterity beyond the capability of humans is the ultimate goal of robotics research. This paper prove the robust control using Analog Adaptive Resonance Theorv(ART2) Algorithm about case study.

  • PDF

Nonlinear Frequency Response Analysis of Circumferentially Grooved Journal Bearing Considering Cavitation (공동을 고려한 원주방향 급유홈 저널 베어링의 비선형 진동 해석)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.160-166
    • /
    • 1999
  • Nonlinear characteristics of the hydrodynamic journal bearing with circumferentially groove are analyzed numerically considering cavitation region, when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width universal Reynolds equation at each time step. Frequency response function and journal orbit obtained from both linear and nonlinear bearing simulations are compared with each other. The vibration response of the journal is different from the expectation obtained from the linear analysis as increase the vibration amplitude of external disturbance. Therefore, the linear theory is not adequate, and the nonlinear calculation such as used in this research is needed to design safety rotor systems.

  • PDF

Adaptive Neural Dynamic Surface Control via H Approach for Nonlinear Flight Systems (비선형 비행 시스템을 위한 H 접근법 기반 적응 신경망 동적 표면 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.254-262
    • /
    • 2008
  • In this paper, we propose an adaptive neural dynamic surface control (DSC) approach with $H_{\infty}$ tracking performance for full dynamics of nonlinear flight systems. It is assumed that the model uncertainties such as structured and unstrutured uncertainties, and external disturbances influence the nonlinear aircraft model. In our control system, self recurrent wavelet neural networks (SRWNNs) are used to compensate the model uncertainties of nonlinear flight systems, and an adaptive DSC technique is extended for the disturbance attenuation of nonlinear flight systems. All weights of SRWNNs are trained on-line by the smooth projection algorithm. From Lyapunov stability theorem, it is shown that $H_{\infty}$ performance nom external disturbances can be obtained. Finally, we present the simulation results for a nonlinear six-degree-of-freedom F-16 aircraft model to confirm the effectiveness of the proposed control system.