• Title/Summary/Keyword: External Dose

Search Result 474, Processing Time 0.024 seconds

One Case of Esophageal Cancer Treated with High Dose Rate ICR (고 선량률 강내 치료기를 이용한 식도암 치험 1례)

  • Kim, Kyeung-Ae;Kim, Sung-Kyu;Shin, Sai-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.1
    • /
    • pp.147-151
    • /
    • 1988
  • Esophageal cancers are highly malignant neoplasms. Prognosis of esophageal cancer treated by external irradiation alone is rather poor because of local recurrence and distant metastasis. Recently intracavitary irradiation has been used as a boost therapy after external irradation to optain better local control. One case of esophageal cancer has been treated by high dose rate remote-controlled afterloading unit as boost therapy after external irradiation. The result was excellent in short term follow up esophagogram but esophageal bleeding and esophagotracheal fistula were noted in further follow up examination after inappropriate posttreatment management including insufficient chemotherapy due to poor general condition. We reviewed possible causes of esophageal bleeding and esophagotracheal fistula after external irradiation and high dose rate ICR.

  • PDF

Esophageal tolerance to high-dose stereotactic radiosurgery

  • Lee, Bo Mi;Chang, Sei Kyung;Ko, Seung Young;Yoo, Seung Hoon;Shin, Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.234-238
    • /
    • 2013
  • Purpose: Esophageal tolerance is needed to guide the safe administration of stereotactic radiosurgery (SRS). We evaluated comprehensive dose-volume parameters of acute esophageal toxicity in patients with spinal metastasis treated with SRS. Materials and Methods: From May 2008 to May 2011, 30 cases in 27 patients with spinal metastasis received single fraction SRS to targets neighboring esophagus. Endpoints evaluated include length (mm), volume (mL), maximal dose (Gy), and series of dose-volume thresholds from the dose-volume histogram (volume of the organ treated beyond a threshold dose). Results: The median time from the start of irradiation to development of esophageal toxicity was 2 weeks (range, 1 to 12 weeks). Six events of grade 1 esophageal toxicity occurred. No grade 2 or higher events were observed. $V_{15}$ of external surface of esophagus was found to predict acute esophageal toxicity revealed by multivariate analysis (odds radio = 1.272, p = 0.047). Conclusion: In patients with spinal metastasis who received SRS for palliation of symptoms, the threshold dose-volume parameter associated with acute esophageal toxicity was found to be $V_{15}$ of external surface of esophagus. Restrict $V_{15}$ to external surface of esophagus as low as possible might be safe and feasible in radiosurgery.

A Study on Predictive Modeling of I-131 Radioactivity Based on Machine Learning (머신러닝 기반 고용량 I-131의 용량 예측 모델에 관한 연구)

  • Yeon-Wook You;Chung-Wun Lee;Jung-Soo Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.131-139
    • /
    • 2023
  • High-dose I-131 used for the treatment of thyroid cancer causes localized exposure among radiology technologists handling it. There is a delay between the calibration date and when the dose of I-131 is administered to a patient. Therefore, it is necessary to directly measure the radioactivity of the administered dose using a dose calibrator. In this study, we attempted to apply machine learning modeling to measured external dose rates from shielded I-131 in order to predict their radioactivity. External dose rates were measured at 1 m, 0.3 m, and 0.1 m distances from a shielded container with the I-131, with a total of 868 sets of measurements taken. For the modeling process, we utilized the hold-out method to partition the data with a 7:3 ratio (609 for the training set:259 for the test set). For the machine learning algorithms, we chose linear regression, decision tree, random forest and XGBoost. To evaluate the models, we calculated root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) to evaluate accuracy and R2 to evaluate explanatory power. Evaluation results are as follows. Linear regression (RMSE 268.15, MSE 71901.87, MAE 231.68, R2 0.92), decision tree (RMSE 108.89, MSE 11856.92, MAE 19.24, R2 0.99), random forest (RMSE 8.89, MSE 79.10, MAE 6.55, R2 0.99), XGBoost (RMSE 10.21, MSE 104.22, MAE 7.68, R2 0.99). The random forest model achieved the highest predictive ability. Improving the model's performance in the future is expected to contribute to lowering exposure among radiology technologists.

Are Medical Personnel Safe from Radiation Exposure from Patient Receiving Radioiodine Ablation Therapy? (갑상선 암의 방사성요오드 치료 시 의료진은 방사선 피폭으로부터 안전한가?)

  • Kim, Chang-Guhn;Kim, Dae-Weung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.259-279
    • /
    • 2009
  • Radioiodine ablation therapy has been considered to be a standard treatment for patient with differentiated thyroid cancer after total thyroidectomy. Patients may need to be hospitalized to reduce radiation exposure of other people and relatives from radioactive patients receiving radioiodine therapy. Medical staffs, nursing staffs and technologists sometimes hesitate to contact patients in radioiodine therapy ward. The purpose of this paper is to introduce radiation dosimetry, estimate radiation dose from patients and emphasize the safety of radiation exposure from patients treated with high dose radioiodine in therapy ward. The major component of radiation dose from patient is external exposure. However external radiation dose from these patients treated with typical therapeutic dose of 4 to 8 GBq have a very low risk of cancer induction compared with other various risks occurring in daily life. The typical annual radiation dose without shielding received by patient is estimated to be 5 to 10 mSv, which is comparable with 100 to 200 times effective dose received by chest PA examination. Therefore, when we should keep in mind the general principle of radiation protection, the risks of radiation exposure from patients are low and the medical personnel are considered to be safe from radiation exposure.

The Evaluation of External Radiation Exposure dose rate for Radium-223 Dichloride (Radium-223 Dichloride의 외부 방사선량의 평가)

  • Cho, Seong Wook;Yoon, Seok Hwan;Seung, Jong Min;Kim, Tae Yub;Im, Jeong Jin;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.28-31
    • /
    • 2016
  • Purpose $^{223}Ra-Dichloride$ is used for the medicine of castration-resistant prostate cancer (CRPC) and which emits ${\alpha}-ray$ of 28 Mev that is used for therapy. However $^{223}Ra-Dichloride$ emits ${\beta}-ray$ of 3.6% and ${\gamma}-ray$ of 1.1%(80,156,270 keV) aside from ${\alpha}-ray$ in decay. Therefore we would like to evaluate external radiation expose dose rate of ${\gamma}-ray$ of $^{223}Ra-Dichloride$. Materials and Methods We calculated external radiation expose dose rate using ${\gamma}-constant$ of $^{223}Ra-Dichloride$, $^{99m}Tc$ based on Health physics(2012). $^{223}Ra-Dichloride$ of 3.5 MBq and $^{99m}Tc-MDP$ of 740 MBq were applied. external radiation expose dose rate 15 times from 1m by survey meter. Results ${\gamma}-contant$ of $^{223}Ra$, $^{99m}Tc-MDP$ from 1m distance based on Health physics(2012) is 0.0469, 0.0215. calculated value of external radiation expose dose rate was $16{\mu}Sy$, $34{\mu}Sy$ which activity is $^{223}Ra-Dichloride$ of 3.5 MBq and $^{99m}Tc-MDP$ of 740 MBq from 1 m and measured mean value of 1 m was $0.7{\mu}Sy/h$, $18{\mu}Sy/h$. Conclusion ${\gamma}-constant$ of $^{223}Ra$ is higher than $^{99m}Tc$ based on Health physics(2012). however calculated maximum external radiation expose dose rate of $^{223}Ra-Dichloride$ is lower than $^{99m}Tc$ due to actually used quantity of activity of $^{223}Ra-Dichloride$ is small. measured value of $^{223}Ra-Dichloride$ is also lower than $^{99m}Tc-MDP$. Therefore external radiation expose dose rate of ${\gamma}-ray$ of $^{223}Ra-Dichloride$ is very low.

  • PDF

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia

  • Abdullahi, Shittu;Ismail, Aznan Fazli;Samat, Supian
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.325-336
    • /
    • 2019
  • The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.

Korean-specific dose coefficients for external environmental exposures: Soil contamination

  • Ji Won Choi;Yumi Lee;Bangho Shin;Chansoo Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4375-4383
    • /
    • 2024
  • In this study, we first produced the Korean-specific dose coefficients (DCs) for soil contamination using the Mesh-type Reference Korean Phantoms (MRKPs). The Korean DCs were compared with the values in ICRP Publication 144 produced using the Caucasian-based ICRP reference phantoms to investigate dosimetric impact due to the racial difference (Korean/Asian vs Caucasian). Monte Carlo dose calculations using the Geant4 code were conducted where the photon and electron sources in the phase-space data used for the ICRP-144 DC calculations were irradiated to the MRKPs. For photons, the organ DCs of the MRKPs showed a good agreement with the ICRP-144 DCs (deviations <20 %) for most energies, while significant differences at energies below 0.05 MeV were observed by up to a factor of 55.6 (thymus at 0.015 MeV). For electrons, notable differences in the organ DCs were observed the overall energy region (deviations >20 % for most cases). The effective DCs of the MRKPs showed an excellent agreement with the ICRP-144 DCs for photons (deviations <16 %), whereas notable differences by up to 1.7 times (0.05 MeV) were observed for electrons. The Korean DCs for soil contamination will be beneficially used in dose estimates for Koreans especially in risk assessments.

Investigations of the External Dose Rate (${\mu}Sv/h$), the Residual Activity (mCi) and the Excretion Rate (%) of Thyroid Cancer Patients Hospitalized for 3700 MBq (100 mCi) $^{131}I$ Radioiodine Treatment ($^{131}I$ 3700 MBq (100 mCi) Therapy 입원 환자의 선량률(${\mu}Sv/h$), 잔류량(mCi), 배설률(%) 측정)

  • Bae, Gi-Han;Kim, Hwa-Joong;Choi, Jae-Jin;Lee, Won-Guk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.48-55
    • /
    • 2009
  • Purpose: As Korean nuclear law doesn't have any clear guideline about the dose and the external dose rate(uSv/h) requiring hospitalization in radioactive iodine treated patients, the patients are discharged when they meet the guideline of IAEA Basic Safety Standards(BSS). We measured external dose rate(${\mu}Sv/h$) of inpatient underwent 3700MBq (100 mCi) $^{131}I$ radioiodine treatment and considering external dose rate(${\mu}Sv/h$), residual activity(mCi) and excretion rate(%) we found the time for RA to be lowered from 3700MBq (100 mCi) to 1110 MBq (30 mCi) to give reference to set a guideline for discharge. Materials and Methods: Forty-two patients underwent thyroidectomy and scheduled for radioiodine treatment, who received 3700MBq (100 mCi) of $^{131}I$ orally and had no renal disease were examined. After 1, 2, 4, 8, and 20, 24, 40 hours iodine uptake and before/after the urination, the external dose rate(${\mu}Sv/h$) measured using FH40G-L(Thermo Fisher Scientific Inc., MA) at a distance and a height of 1 m for 20 sec on the average. Results and Conclusions: At 20 hours, the external dose rate was decreased to $49{\pm}13\;{\mu}Sv$/h, namely, 78% of administrated radioactivity was excreted and 814 MBq (30 mCi) was residual, and it met the accepted limit for discharge of (IAEA, BSS) under 1110 MBq (30 mCi) (1 m at 66 uSv/h).

  • PDF