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Ⅰ. Introduction  

The handling and administration of high-dose I-131 

poses the risk of internal and external exposure for 

radiology technologists. The risk of internal exposure 

is less today than it has been in the past because of the 

increased stability of therapeutic capsule formulations 

of I-131 and the widespread adoption of the capsular 

form of I-131 for therapy [1, 2]. However, the risk of 

external exposure to localized areas such as the hands 

and eyes still exists because it is necessary to directly 

measure dose radioactivity with a dose calibrator 

when there is a difference between the calibration 

date and the date of the dose is administered to the 

patient. Radiology technologists should wear protective 

gear when measuring high-dose I-131 as shown in 

Fig. 1. 

The equivalent dose can be calculated using Equation 
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Abstract  High-dose I-131 used for the treatment of thyroid cancer causes localized exposure among radiology technolo-

gists handling it. There is a delay between the calibration date and when the dose of I-131 is administered to a patient. 

Therefore, it is necessary to directly measure the radioactivity of the administered dose using a dose calibrator. In this 

study, we attempted to apply machine learning modeling to measured external dose rates from shielded I-131 in order to 

predict their radioactivity. External dose rates were measured at 1 m, 0.3 m, and 0.1 m distances from a shielded con-

tainer with the I-131, with a total of 868 sets of measurements taken. For the modeling process, we utilized the hold-out 

method to partition the data with a 7:3 ratio (609 for the training set:259 for the test set). For the machine learning algo-

rithms, we chose linear regression, decision tree, random forest and XGBoost. To evaluate the models, we calculated root 

mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) to evaluate accuracy and R2 to 

evaluate explanatory power. Evaluation results are as follows. Linear regression (RMSE 268.15, MSE 71901.87, MAE 231.68, 
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6.55, R2 0.99), XGBoost (RMSE 10.21, MSE 104.22, MAE 7.68, R2 0.99). The random forest model achieved the highest 

predictive ability. Improving the model’s performance in the future is expected to contribute to lowering exposure among 

radiology technologists.
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1, where WR represents the radiation weighting factor 

and DT,R is the absorbed dose averaged over the tissue 

or organ, T, of the incident radiation, R. For example, 

when working for 10 seconds to measurement 7400 

MBq of I-131, the equivalent dose to a hand at a 

distance of 10 cm from the I-131 is 0.157 mSv (the 

gamma constant for I-131 is 7.647E-5 mSv/h per 1 

MBq at 1 m).

 


 (1)

As the number of measurements increases, the exposure 

dose also increases. This causes great psychological 

burden on radiology technologists. In order to reduce 

exposure to radiation among workers in the long term, 

we conducted a study employing AI technology. Machine 

learning is a subtype of AI that uses algorithms through 

data analysis without being explicitly programmed [3-5]. 

Machine learning is generally divided into supervised 

learning and unsupervised learning. Supervised learning 

algorithms learn by using paired inputs and outputs 

presented to them by humans to find patterns so that 

it can correctly predict output values for new data. In 

this study, we designed a supervised machine learning 

model by applying techniques used in big data analysis 

modeling, which is currently being used in the data 

science field. We aimed to train the model and predict 

the radioactivity of high dose I-131 based on the 

measured external dose rate of the I-131 in a shielded 

container.

Ⅱ. Materials and methods

A sequential depiction of our methodology is shown 

in Fig. 2. The external dose rates were measured at 1 

m, 0.3 m and 0.1 m distances from I-131 sources in a 

shielded container obtained from suppliers, with the 

dose rate equal to the highest value measured over a 

1-minute time span (Fig 3). Due to the characteristics 

of the survey meter for external dose rate, which 

measures in units of μSv per hour, fluctuations in 

measured values can occur. In order to obtain a 

consistent measurement, we adopted the method of 

taking the highest value measured over a 1-minute 

time span. A total of 868 sets of measurements were 

acquired, 358 at 3700 MBq (100 mCi) and 510 at 5550 

MBq (150 mCi). The actual measured activities are 

found to be significantly higher than the administered 

amount (up to 10% higher), due to the standard practice 

of preparing the dose with a margin, taking into account 

decay. Therefore, we explicitly distinguish between 

Fig. 1. Radiology technologists should wear protective gear 

(A) when measuring high-dose I-131 due to the risk of external 

exposure to localized areas such as the eyes and hands (B).

Fig. 2. Methodology flowchart. we designed a supervised machine learning model by applying techniques used in big data analysis

modeling, which is currently being used in the data science field.
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3700 MBq and 5550 MBq, not actual measured values. 

A RAM DA3-2000 Meter (Rotem Industries Ltd.) was 

used to measure the dose rates. We used only one type 

of instrument as we aimed to predict results using 

intuitive measurement values without correcting for 

correction factors.

1. Exploratory data analysis

We employed exploratory data analysis (EDA) which 

was devised by Tukey JW in 1977 [6]. Using EDA, the 

characteristics of the total data set were identified; 

data preprocessing, such as identifying outliers and 

missing values, was performed; and the correlation 

between explanatory variables and response variables 

was examined with a linear regression model. Finally, 

we visualized suitability of the data for modeling.

2. Machine learning

We used the hold-out method to generate the training 

and test sets for the training of the machine learning 

models. This is one of the simplest data resampling 

strategies: it randomly samples some data from the 

learning set for the test set, while the remaining data 

constitute the training set [7, 8]. In our study, the data 

set was split, with 70% of the data for the training set 

and 30% for the test set. We created two models which 

employed a simple algorithm and two models which 

employed an ensemble algorithm. All created supervised 

machine learning algorithms were implemented using 

R programming language (version 4.2.0) in the Windows 

operating system environment. Linear regression is 

one of the oldest and most widely used correlational 

techniques. The goal of the method is to fit a straight 

line to a set of data points using a series of coefficients 

multiplied to each input, like a weighting function, and 

an intercept. Linear regression is easy to understand 
and quick to implement, even on larger data set. The 

downside of this method is that it is inherently linear 

and does not always fit real-world data [9]. A decision 

tree (DT) algorithm is used to divide learning activities 

where the tree is constructed by dividing the data set 

into smaller sets until each partition is clean and pure, 

where data classification depends on the type of data 

[10, 11]. The DT algorithm is one of the most effective 

learning algorithms due to its ability to handle all types 

of data, ease of comprehension and simplicity [12]. The 
party package in R was used with a maximum tree depth 

of 3 for visualization of DT (R Documentation: Package 

party version 1.3–10). In an ensemble algorithm, bagging 

or bootstrap aggregation (boosting) is a technique for 

reducing the variance of an estimated prediction 

function. Bagging seems to work especially well for 

high-variance, low-bias procedures, such as trees. For 

regression, we simply fit the same regression tree many 

times to bootstrap sampled versions of the training 

data, and average the results. Similar to bagging, 

boosting is a committee method, although, unlike 

bagging, the committee of weak learners evolves over 

time, and the members cast a weighted vote. Boosting 

appears to dominate bagging on most problems, and has 

become the preferred choice. We chose to use random 

forest (RF), which is a substantial modification of 

bagging that builds a large collection of de-correlated 

trees and then averages them. On many problems the 

performance of RF is very similar to boosting, and they 

are simpler to train and tune. As a consequence, RF 

is popular, and is implemented in a variety of packages 

[13]. Extreme gradient boost (XGBoost) is the fastest 

implementation of gradient boost, which is representative 

algorithm using boosting. XGBoost can harness all the 

processing power of modern multicore computers and 

is feasible to train on large data sets [14]. XGBoost was 

Fig. 3. The external dose rates were measured at 1 m (A), 

0.3 m (B) and 0.1 m (C) distances from I-131 sources in a 

shielded container, with the dose rate equal to the highest 

value measured over a 1-minute time span.
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chosen for comparison with RF.

3. Evaluation

To evaluate the predictive accuracy of the models, 

root mean square error (RMSE), mean square error 

(MSE), and mean absolute error (MAE) were calculated 

according to Equation 2-4, where  is the actual 

radioactivity of the I-131 dose and  is the radioactivity 

predicted by the model.
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R squared (R2), the coefficient of determination, was 

also used to evaluate the models. R2 is calculated 

according to Equation 5, where  is mean of the actual 

radioactivity of the I-131 dose (). The model-metrics 

package in R was used to print the evaluation results. 

To evaluate the two models with best performance, we 

validated them with 11 newly measured sets.

      


 


(5)

Ⅲ. Results

1. Exploratory data analysis

Fig. 4 is a boxplot of the total data set. There were 

no missing values and no outliers were detected. It can 

be seen that the interquartile range (IQR) of dose rate 

is the smallest at 1 m. This means that the dose rate 

does not fluctuate at increased distances from the 

shielded I-131, in accordance with the inverse-square law 

of distance. In the correlation analysis, the correlation 

coefficient between distance from the shielded I-131 

and dose rate was high (≥ 0.9), and the correlation 

coefficient between dose rate was also close to 1. We 

investigated multi collinearity by calculating the 

variance inflation factor (VIF) among the variables in 

the total data set. Since the VIF of the total data set 

was very high, we divided the data set into two groups, 

a 3700 MBq group and a 5550 MBq group, for statistical 

analysis (Table 1). The overall regression was statistically 

significant in both the 3700 MBq group (R2=0.98, F (3, 

354)=5783.225, P<0.001) (Table 2) and the 5550 MBq 

group (R2=0.96, F (3, 506)=4494.678, P<0.001) (Table 3).

Fig. 5 is a visualization of the classification and 

regression trees (CART) algorithm implemented in the 

DT. The 0.3 m variable of the first node at the top 

implies that it is most closely related to the radioactivity 

of I-131. It can be seen that the data set was suitable 

for the model as it was split into 4 leaf nodes at 3700 

MBq and 4 leaf nodes at 5550 MBq.

Fig. 4. Boxplot of data set. x-axis is distance (m) from the 

shielded I-131, and y-axis is the external dose rates (μSv/h).

Table 1. Variance inflation factors for the total data set

Variable VIF*

1.0 m 22.742

0.3 m 45.458

0.1 m 51.145

* Variance inflation factor
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Table 2. Linear regression results for the 3,700 MBq group

　Dose 3,700 MBq Coef* SE† t‡ P VIF§

Constant 3233.573 5.961 542.472 <0.001

1.0 m 11.580 1.586 7.300 <0.001 3.127

0.3 m 8.612 0.337 25.558 <0.001 9.972

0.1 m 1.102 0.087 12.709 <0.001 10.755

Observations 358

R2 0.980

Adjusted R2 0.980

Residual SE 6.136 (df = 354)

F statistic F = 5783.255, P < 0.001

* Coefficients, † Standard error, ‡ t-value, § Variance inflation factor

Table 3. Linear regression results for the 5,550 MBq group

Dose 5,550 MBq Coef* SE† t‡ P VIF§

Constant 4357.549 12.907 337.620 <0.001

1.0 m 38.947 4.206 9.260 <0.001 5.615

0.3 m 5.715 0.430 13.294 <0.001 6.123

0.1 m 3.035 0.130 23.416 <0.001 7.714

Observations 510

R2 0.964

Adjusted R2 0.964

Residual SE 11.487 (df = 506)

F statistic F = 4494.678, P < 0.001

* Coefficients, † Standard error, ‡ t-value, § Variance inflation factor

Fig. 5. Visualization of the classification and regression trees (CART) algorithm implemented in the decision tree. The 0.3 m

variable of the first node at the top implies that it is most closely related to the radioactivity of I-131. The data set was suitable

for the model as it was split into 4 leaf nodes at 3700 MBq and 4 leaf nodes at 5550 MBq.
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2. Evaluation of models 

When evaluating the accuracy of the models, the 

smaller the RMSE, MSE and MAE, the better performance 

of the model, and the closer R2 was to 1, the higher 

explanatory power of the model. Random numbers 

used for random sampling were fixed using the seed 

function. The model with the best performance was 

the RF model, with a RMSE of 8.894, MSE of 79.098 

and MAE of 6.546. On the other hand, as expected, 

the performance of the models employing a simple 

algorithm was not good. In particular, the MSE of the 

linear regression model was 71901.870 (Table 4).

Ⅳ. Discussion

In this study, we created a data set consisting of 

external dose rates of high-dose I-131 measured at 

distances of 1 m, 0.3 m, 0.1 m, and used it to train 

supervised machine learning algorithms to predict the 

actual level of radioactivity of I-131 doses. The purpose 

of this study was not to compare and evaluate machine 

learning algorithms, but to focus on finding the optimal 

model for predicting the actual radioactivity. This means 

that the desired characteristics of candidate models, 

such as type of data and linearity, were identified in 

advance, and we had specific suitable models in mind. 

The correlation and linear relationship in the linear 

regression statistical analysis results support this. For 

modeling, the RF and XGBoost algorithms are already widely 

known to be suitable for regression and classification 

[15-17]. RF, which performed best in this study, has 

many advantages: it is fast in both model training and 

evaluation, is robust to outliers, can capture complex 

nonlinear associations, and has been shown to handle 

challenges arising from small data sets [18-20]. RF 

performed very well even with a small data set in this 

study. We need to focus on how much the concern about 

radiation exposure will be improved. Several studies 

have been conducted on reducing the exposure of 

workers to radiation safely. Among these, LLtzen U et 

al. developed a shielded measurement method by 

creating calibration curves using measurements of 

shielded I-131 capsules from a dose calibrator and a well

‐type and a thyroid uptake probe. This method reduced 

the effective radiation dose by 94.9% [21]. We calculated 

the equivalent dose to the hand when directly measuring 

the radioactivity of 7400 MBq of I-131 in the introduction 

of this study. If our trained RF model were used, although 

there would be the disadvantage of increased working 

time due to the measurement of the external dose rates, 

an equivalent dose of about 0.00885 mSv would be expected, 

which would represent a 94% reduction compared to the 

direct measurement method (Table 5). This usage of a 

predictive model to reduce the equivalent dose is not 

limited to determining the radioactivity of high-dose 

I-131, but can be extend to predicting the radioactivity 

Table 4. Accuracy the models

Model RMSE MSE MAE R2

Linear regression 268.145 71901.870 231.678 0.917

DT 108.890 11856.920 19.237 0.986

RF 8.894 79.098 6.546 0.999

XGBoost 10.209 104.219 7.676 0.999

Table 5. Comparison of equivalent doses

　
Working time 

(sec)

Distance to hand 

(m)

Gamma constant 

(mSv*MBq/m2/h)

Equivalent dose 

(mSv)

Total 

(mSv)

Direct measurement 10 0.1 7.638E-05 0.157000 0.157

Predictive model using dose 

rate measurement

60 0.1 5.784E-07 0.007134 

0.0088560 0.3 1.108E-06 0.001518 

60 1.0 1.603E-06 0.000198 
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of several sources using measured external dose rates, 

and further research is expected. The limitations of this 

study are as follows. First, overfitting could not be 

excluded to some extent in the two ensemble models. 

In the training set, the RMSE was 8.894 for the RF 

model and 10.209 for the XGBoost model, but when the 

performance of the RF and XGBoost models was validated 

using 11 newly measured sets, the RMSE was 38.726 for 
the RF model and 42.670 for the XGBoost model (Table 6). 

According to Breiman L, a relatively large number of 

variables are required to get a near-optimal test set 

error [22]. This means that external dose rate values  
 measured at various distances are required, and increasing 

the number of these variables would improve the 

performance of the model. The performance of the 

model could be improved if more measurement distances 

were added in place of the measurement at 1 m, where 

the variable importance is 0 (Table 7), but this has a 

drawback in that the measurement time increases. 

These issues should be considered going forward. For 

therapeutic administrations of I-131, if more than a 

10% variance from the prescribed dose or dosage range 

occurs, the referring physician and patient should be 

notified [23, 24]. The second limitation is that the model 

cannot predict when this variance of 10% or more will 

occur. When RF is employed for regression, it is unable 

to predict doses beyond the range seen in the training 

data set. Because, in the training data set, there were 

no cases that had an error of more than 10%, the model 

was not able to learn to predict such cases. We expect this 

problem can be addressed by employing a classification 

model such as support vector machine (SVM), which is 

capable of learning to identify cases where there is a 

10% or greater variance in dose.

Ⅴ. Conclusion

To predict the radioactivity of high-dose I-131 using 

a supervised machine learning model, we collected a 

Table 6. Example of validating trained random forest and extreme gradient boost models

Dose rate (μSv/h) Actual activity

(MBq)

Predictive model activity (MBq)

1.0 m 0.3 m 0.1 m RF XGBoost

5.83 45.40 216.00 3940.50 3925.70 3922.00

5.80 48.10 226.00 3907.20 3947.90 3947.90

4.50 38.50 175.00 3833.20 3822.10 3807.30

5.20 46.80 186.00 3899.80 3907.20 3881.30

5.90 43.70 193.00 3903.50 3888.70 3873.90

5.54 41.10 217.00 3899.80 3888.70 3914.60

5.61 44.70 216.00 3907.20 3918.30 3914.60

5.52 43.50 213.00 3896.10 3903.50 3903.50

5.98 43.10 197.00 3966.40 3888.70 3873.90

6.29 42.80 191.00 3925.70 3925.70 3929.40

5.53 44.00 211.00 3822.10 3910.90 3907.20

RMSE 38.726 42.670

MSE 1499.677 1820.770

MAE 25.900 31.282

Table 7. Random forest variable importance 

Variable Overall

0.3 m 100.000

0.1 m 16.710

1.0 m 0.000
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data set containing measurements of external dose rates 

from a shielded I-131 at various distances. We found 

that there was a correlation and a linear relationship 

between the external dose rate of high-dose I-131 and 

the actual radioactivity. Random forest achieved the 

best predictive capability with an RMSE of 8.894, MSE 

of 79.098, and MAE of 6.546. Improving the model’s 
performance in the future is expected to contribute to 

lowering exposure among radiology technologists.
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