• Title/Summary/Keyword: Exterior flame

Search Result 40, Processing Time 0.029 seconds

An Experimental Study on Combustion Characteristics of Aluminum Composite Panels for Flame Retardant and General Materials (난연소재와 일반소재 알루미늄복합패널의 연소특성 비교에 관한 실험적 연구)

  • Min, Se-Hong;Yun, Jung-Eun;Kim, Mi-Suk
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • In this research, aluminum composite panels of the general materials and fire retardant materials as building claddings make researches about fire performance comparison analysis. Test methods of the small and medium cone calorimeter experiments and SBI (Single Burning Item) experiments was applied to the determination. As a result, in the experiments peak heat release rate cone calorimeter the general aluminum composite panel $1,293kW/m^2$ ($75kW/m^2$), flame-retardant aluminum composite panel $70kW/m^2$ ($75kW/m^2$) was measured. In the SBI experiments fire growth rate the general fire aluminum composite panel is approximately 743 W/s and the flame-retardant aluminum composite panel is approximately 97 W/s of the value were measured. Thus, a standards enactment are urgently required in this case it is used as building claddings of the aluminum composite panel by fire risk assessment.

Quantitative Distribution of Created Voids by Applying General Flame and DC Short-circuit Current to 2.5 mm2 HIV (2.5 mm2 HIV에 일반화염 및 DC 단락 전류를 인가하여 생성된 기공의 정량적 분포 해석)

  • Kim, Seung-Sam;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.38-42
    • /
    • 2013
  • This study performed the quantitative distribution analysis of created voids to an insulator when applying general flame and DC short-circuit current to 2.5 $mm^2$ HIV (600 V Grade Heat-Resistant Polyvinyl Chloride Insulated Wires). The diameter of cross-section of HIV normal product and the radius of conductor were measured to be 3.3 mm and 1.8 mm. The exterior of HIV exposed to general flame showed severe carbonization and its interior exhibited voids created by dechlorination reaction. This study observed the characteristics that, when the shortcircuit current applied for 2 seconds from a DC 12 V lead battery, the conductor and neighboring insulator were melted, causing the insulator adhering to the conductor. On average, 87 voids were created on 10 mm of the HIV. The average diameter of voids was 0.25 mm. In addition, it was found that, when the short-circuit current applied for 4 seconds, the interior of insulator in contact with conductor severely carbonized and showed exfoliation phenomenon. On average, 47 voids were created, with more voids at the bottom. The average diameter of voids was 0.20 mm. When the short-circuit current for 6 seconds, most parts of upper part of conductor was carbonized, 20 voids were created. The average diameter of voids was measured to be 0.24 mm. It could be seen that the created voids received little influence by the type of energy source and the number of created voids was reduced as the energy supply time increased.

Analysis on Installation Conditions Survey and Improvement of Drain Pump in Air-Conditioner : Focusing on Changwon City (에어컨 배수펌프 설치 실태 및 개선방안 분석 - 창원시를 중심으로)

  • Kim, Sung-Sam
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.102-106
    • /
    • 2012
  • This paper was carried out to survey fire hazard and improvement at the drain pump in air-conditioners. Based on the results of analysis, the proposal of electrical accidents prevention and a construction improvement are as follows. A power connection of the drain pump has two types, an electrical outlet type and direct connection type at control board of air-conditioner. The electrical outlet types need a bulletin sign or education as malfunction of the drain pump include an additional accidents, current leakage and overflowing with water on the floor from breaker trip by exterior cause and breaker off by mistake of worker. On the other hand, the direct connection types prevent a power interruption as exterior cause, but it has some trouble, cut of ground cable and without protection device. Usually it doesn't work by electrician when air-conditioner and the drain pump power work. Therefore an education or countermeasures are recommended for not electrician. Generally malfunction of the drain pump causes accumulated materials into the tank. Even though the accumulated materials lead to an overheating and burning as failure of detector occur an idling, periodic inspection of the air-conditioner filter and the drain pump tank prevent the trouble.

Research for the Configuration of the Outside Sprinkler System (외벽방호 스프링클러시스템 구성에 관한 연구)

  • Min, Se-Hong;Yun, Jung-Eun;Sun, Ju-Seok;Jeong, Sang-Ho;Chea, Chang-Hun;Kim, Suck-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.102-112
    • /
    • 2012
  • In this research, configulation of outside sprinkler system the prevention and postponement of vertical diffusion of blaze was studied prior to this study, vertical diffusion protecting sprinkler head has been developed and the sprinkler system was applied with discharge pressure of 0.05 MPa and flow of 60 l/min witch is stated in NFPA13's Exposure Protection Sprinkler Systems. Through the system design, we applied the system to the sample building and we made pertinent system to work manually and automatically linked to a fire alarm system. Also, we conducted a real-size mock up test verify the cooling effect of the outer wall and the postponement effect of the flame.

A study on manufacturing technologies of the large-sized jar-coffins exhumed mainly in the Young San river area (대형옹관의 제작기법 연구-영산강유역 출토 옹관을 중심으로)

  • Yang, Pil-Seung;Park, Chul-Won
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.57-75
    • /
    • 2005
  • The burial custom in the Youngsan river area was to build a jar-coffin and lay the body in state, however the methods in building and moulding the massive jar, as well as in which kiln it was made has not been examined precisely. Thus, this research not only investigates previous results related to the manufacturing methods of massive jar-coffins, but also examines samples that were excavated and collected. The clay used to produce jar-coffin consists a large portion of unglazed qualities, which was split-moulded from the bottom up to the mouth area. The interior was finished by applying water, whereas the exterior was decorated by regularly pasting or stamping in parallel with a lattice design. It can be presumed that the finished jar-coffin was not moved, but the ceiling and walls were built around it as a kiln, for the jar-coffin to be oxidized or to reduce the flame condition in a temperature approximately $700~1,200^{\circ}C$The results from the research, however, show limitations to exploit the exact manufacturing method, therefore there is a need for in-depth examinations: mineralogical investigation on a large amount of jar-coffin samples through a polarized light microscope; substance analysis using various equipments; speculation on the temperature in the place of production and the flame inside.

  • PDF

A Study on the Fire Characteristics of Aluminum Composite Panel by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 알루미늄 복합패널 외장재의 연소특성에 관한 연구)

  • Yun, Jung-Eun;Min, Se-Hong;Kim, Mi-Suck;Choi, Sung-Bok
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • In this research, exterior material combustion experiment was really tested to evaluate fire risks of aluminium complex panel which is used a lot for building exterior material. As a result, We saw fast fire spreading of aluminium complex panel. The reason is polyethylene in aluminum complex panel combust spreading fast fire flame vertically. In this test, the highest heat release rate of aluminum complex panel was 1,144 kW and surface temperature which is measured by thermocouple went up to more than $903.3^{\circ}C$, that temperature is quite a higher than $660^{\circ}C$ which is aluminum melting temperature. So, fire of aluminum complex panel can be evaluated to give us severe damage both by fast fire spreading vertically and by fire spreading through openings internally. These results from real experiment will be able to use to predict fire spreading of aluminum complex panel by comparing to modeling materialization of aluminum complex panel in the future.

A Study on the External Wall Heating Temperature Distribution According to Opening Upper Shading Installation and Length (개구부 상부 차양설치 및 길이에 따른 외벽 수열온도분포에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • This study used a real-scale model experiment to reproduce internal fires in residential buildings such as a multi-dwelling unit, in order to prevent damage caused by tens of thousands of fires witnessed each year and to take measures to cope with them. For experimental conditions, different opening sizes were applied to measure and analyze the heating temperature of the exterior wall. Results drawn are as follow : On top of this, the experimental conditions had whether to install shading and put a shading length differently, before measuring and analyzing the heating temperature of the exterior wall. Subsequent results were drawn as shown below. Based on the maximum temperature, the temperature was lowered as much as around 90℃ at 150mm, around 150℃ or over at 300mm and over 175℃ at 450mm. It also turned out that the difference in maximum temperature dropped by around 180℃ or over. This indicated that the shading installation works well in lowering flame temperature generated by fire spread of the exterior wall.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Improvement of fire protection equipment the opening of according to narrow the distance between buildings (건물 간 이격거리 협소에 따른 개구부 방화설비의 개선방안)

  • Oh, Taek-Hum;Park, Chan-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • In the case of the fire to the exterior of the building through openings, the openings of the adjacent building are exposed to the risk of combustion expanding and factors that affect the combustion in the radiant heat and direct flame. Recent five years, fire of the adjacent building indicated that incidence of the 5,134(2.27%) among total 225,934 cases occurred The damage scale of fire expanded was lower than in a single building but casualties(5.46%) and property(25.0%) damage were higher. Therefore, this study provides to analyze the operating status for fire protection equipment of fire-preventing area in the Seoul and to apply measures to improve fire protection equipment according to narrow the distance between the building openings studied.

A Study on the Evacuation Risk of Simultaneous Fires from Exterior (외장재에 의한 동시다발적인 화재의 피난위험성에 관한 연구)

  • Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.48-54
    • /
    • 2012
  • In order to study on the evacuation risk when connate fires caused by vertical fire spread of the exterior occurs, the egress simulations based on the relevant scenarios has carried out. As a result of it, ASET (permitted evacuation time) was reached in between 550 to 650 seconds in entire floors after vertical smoke spread from fire of combustible exteriors. In particular, ASET was 358 seconds in the first floor, 490 seconds in the six floor and 473 seconds in the tenth floor. In addition, five floors of all levels, the 1st floor, the 6th floor and the 28th floor ~30th floor, show RSET (minimum evacuation time) which is bigger than ASET as evacuation risk. This result presents occupants in high rise buildings with more than 15 floors might not be able to egress of them using staircases due to huge population attempting to evacuate simultaneously. Particularly, 699 people in the upper levels by smoke from the first floor are having difficulty escaping this building since ASET on the first floor adjacent to the ignition point was 358 seconds which is relatively reached fast. Considering a prevention method of the fire and smoke spread, architects have to use non-combustible exterior in the building's facade to be required as an active fire protection system.