It is transformed map data of different coordinate system into unique system and We triedto make topographic map on non-accessible area. We transformed Russian map coordinates(Krassovsky, G-K projection) intoWGS-84, TM projection and assessed accuracy. The RMSE(in East and West bearings : ${\pm}$13.67m, in North and South bearings : ${\pm}$14.67m) using only SCP(Survey Control Point) is more accurate than that(in East and West bearings : ${\pm}$24.26m, in North and South bearings : ${\pm}$25.32m) using SCP, intersection of road, bridge. Exterior orientation parameters are estimated using rigorous modelling and GCPs are classified with SCP, intersection of road, bridge. Rigorous modelling is performed with each classified GCP. The modelling result usingonly SCP(in East and West bearings : ${\pm}$13.53m, in North and South bearings : ${\pm}$14.22m) is more accurate than that using intersection of road(in East and West bearings : ${\pm}$16.l1m, in North and South bearings: ${\pm}$23.85m), bridge(in East and West bearings : ${\pm}$17.21m, in North and South bearings : ${\pm}$21.82m). The results means that SCP is more accurate than intersection of road, bridge because of edit to generate map. therefore, SCP is suitable for object of GCP in paper map(1:50,000). Geographic information on non-accessible area and analysis is performed. The results of stereoscopic plotting is well matched old map data on road, railroad but, many objects are generally editted. It is possible to update on new objects(building, tributary ‥‥etc). Ability of description using SPOT-5(stereo) is more than features and items included in 1:50,000 topographic map. Therefore, it is possible to make large scale map than 1:50,000 topographic map using SPOT-5 imagery. But, there are many problems(accurate GCPs, obtain of high resolution stereoscopic satellite imagery in a period ‥‥ etc) to make topographic map on non-accessible area. It is actually difficult to solve these problems. therefore, it is possible to update 1:50,000 topographic map in part of topographic map generation.
본 연구에서는 지형공간정보체계의 자료기반의 구축, 수치도면 제작 등 이용도가 확대되고 있는 수치표고모형을 수치위성영상자료를 이용하여 제작하고자 하였다. 위성영상의 공액 상좌표 취득에는 영상정합기법을 도입하였으며 취득된 지상좌표의 정확도를 분석하여 수치표고모형 제작의 연산법을 제시하였다. 위성영상의 외부표정요소는 광속조정법을 이용하여 결정하였고 좌우 수치영상상에서 동일점을 탐색하기 위한 영상정합방법으로는 표준상관기법을 적용하였다. 영상정합기법을 적용에 있어서는 기준영역의 크기를 결정하기 위해 기준영역의 크기를 다양하게 변화시켜 적절한 크기를 결정하고자 하였다. 영상정합의 정확도를 향상시키고 계산속도를 증가시키기 위하여 다양한 좌표변환식을 적용하고 이 결과를 통계학적으로 분석한 후 안전율을 고려하여 탐색영역을 결정하였다. 본 연구에서 제작된 수치표고모형의 정확도는 5000분의 1 지형도상에서 일정한 간격으로 추출하여 제작된 수치표고모형을 이용하였으며, 정확도를 평가한 결과 수치위성영상을 이용한 수치표고모형을 생성하는 연산법을 제시할 수 있었으며, 지형공간정보체계의 자료기반 구축에 필요한 대단위 지역에 대한 수치표고모형의 생성에 수치위성영상을 적용하는 효율적인 방법을 제시할 수 있었다.
현재 GPS/IMU 기반의 차량항법기술은 GPS 신호 불량지역에서 위치 정밀도가 급격하게 저하된다. 근래에는 많은 차량에 주행 상태를 기록하기 위한 카메라를 탑재하고 있음에 따라 만약 도로시설물을 위치를 알 수 있을 경우 단사진 후방교차법(SPR)을 통해 카메라의 위치 및 자세를 산출할 수 있다. SPR로 추정된 외부표정요소는 GPS/IMU 항법해의 오차를 보정할 수 있음에 따라 GPS 신호 수신환경에 영향을 받지 않고 안정적으로 차량의 위치 및 자세를 결정할 수 있다. 따라서 본 연구에서는 GPS, IMU, 사진측량 기술인 SPR을 결합하여 GPS 수신환경에 구애받지 않고 안정적으로 위치 및 자세를 결정하는 GPS/IMU/SPR 통합 알고리즘을 개발하였다. GPS/IMU/SPR 통합 알고리즘은 확장형 칼만필터를 이용하여 약결합 방식으로 구현하였다. 또한 개발된 GPS/IMU/SPR 통합 알고리즘의 성능을 분석하기 위하여, GPS 수신환경 및 영상에 획득되는 기준점의 배치에 따른 시뮬레이션 테스트를 수행하였다. 시뮬레이션 테스트 결과, GPS/IMU/SPR 결합을 통해 산출되는 위치 및 자세가 GPS/IMU 결합 결과보다 안정적으로 산출되는 것을 확인하였다. 또한 영상의 기준점이 영상 중앙에 집중되어 배치되어 있을 경우에는 광축 방향으로 위치 오차가 증가되는 것으로 분석되었다. 향후 GPS/IMU/SPR 통합 알고리즘 성능을 면밀히 분석하기 위해서는 SPR 수행결과에 영향을 미치는 영상점 및 지상점의 측정오차, 초기 외부표정요소에 따른 성능 분석이 추가적으로 수행되어야 할 것이다.
국내 디지털카메라의 보급으로 항공사진측량에서 디지털 카메라의 비중이 높아지고 있으며, 영상지도 제작이나 수치지형도 제작에 활용이 증가되고 있다. 그러나 사진의 위치정보나 자세정보 등을 포함하지 못하는 경우가 있어, 보다 정확한 사진기준점 성과를 얻기 위해 추가적인 방법이 필요하다. 본 연구에서는 디지털 카메라(DMC)로 촬영된 5개코스 56매의 사진과 35점의 지상기준점 성과를 이용하여 자동접합점 추출에 필요한 사진주점의 위치정보를 지형도에서 얻어 초기치로 입력한 A방법과 4개의 기준점을 이용하여 1번의 블록조정을 거친 외부표정 요소를 초기치로 입력한 B방법에 대해, 독일 INPHO사의 사진기준점측량 소프트웨어인 MATCH-AT를 사용하여 기준점 배치별 성과에 대해 비교분석하였다. 연구결과, B방법에 의한 사진 기준점측량의 정확도가 더 양호하였고, 자가 검정을 더하여 블록조정을 실시함으로 보다 나은 성과를 얻을 수 있었다. 또한 자가검정을 사용하여 지상기준점의 수를 줄일 수 있으므로 측량비용 측면에서도 효과적임을 알 수 있었다.
대부분의 모바일 공간정보 획득시스템은 촬영범위가 좁고 기선 길이에 대한 제약이 따르는 프레임 카메라를 탑재하고 있다, 촬영지점을 기준으로 모든 방향으로의 영상정보 획득이 기능한 전방위 카메라 탑재를 통해 프레임 카메라의 촬영 범위 및 기선 거리에 대한 문제점을 해결할 수 있다. 광속조정법(Bundle Block Adjustment)은 다수의 중첩된 영상의 외부표정요소를 결정하는 대표적인 지오레퍼런싱(Georeferencing) 방법이다. 본 연구에서는 전방위 영상에 적합한 광속조정법의 수학적 모델을 제안하여 전방위 영상의 외부표정요소 및 지상점을 추정하고자 한다. 먼저 전방위 영상에 적합한 공선조건식을 이용해 관측방정식을 수립한다. 그리고 지상 모바일매핑시스템(GMMS, Ground Mobile Mapping System)에 탑재되어 있는 GPS/INS로부터 획득된 데이터와 정지 GPS 및 토털 스테이션(Total Station)을 통해 측정한 지상기준점을 이용한 확률제약조건 (Stochastic Constraints)식을 수립한다. 마지막으로 확률제약조건 요소 및 추정 미지수를 조합하여 다양한 종류의 수학적 모델을 수립하고 모델별로 추정된 지상점 좌표의 정확도를 검증한다. 그 결과, 지상기준점을 확률제약조건으로 사용하는 모델에 적용한 경우에 지상점이 ${\pm}5cm$ 정도로 정확하게 추정되었다. 연구의 결과를 통해 전방위 카메라 영상으로부터 대상객체의 3차원 모델 추출이 가능함을 알 수 있었다.
본 논문에서는 위성 영상을 이용하여 고속으로 수치지형표고 모델을 추출하기 위한 방법을 제안한다. 수치지형표고 모델 추출 방법은 위성의 위치와 자세를 계산하는 카메라 모델링 과정, 스테레오 영상으로부터 동일점을 찾아내는 정합과정 그리고 외부 표정 요소와 정합쌍을 이용하여 고도 정보를 추출하는 고도 정보 계산 과정으로 크게 구분된다. 이 중 정합 과정은 대상 영상의 모든 영역에 대하여 수행되므로 계산량이 많고, 수치지형표고 모델 추출 과정의 대부분의 수행시간을 점유한다. 따라서 본 논문에서는 수치지형표고 모델 추출 과정 중 대부분의 수행시간을 차지하는 정합 기법의 속도 향상을 통하여 수치지형표고 모델 제작 시간을 단축 시킨다. 본 논문에서 제안한 정합 기법의 속도 향상 방법은 두 가지로 분류된다. 첫째는 일반적으로 많이 사용되는 유사함수인 정규상관계수(NCC: Normalized Cross Correlation)에 비해 계산량이 적은 고속 GC(Gradient Correlation)을 사용한다. 둘째는 동일점을 찾기 위하여 사용되는 정합 창틀을 계산할 때, 이전에 미리 계산된 값을 이용하여 계산량을 감소시킨다. 실험에 사용한 입력 영상은 6000$\times$6000 크기의 충청 지역 level 1A SPOT위성 쌍의 일부분이다 실험 결과 기존의 수치지형표고 모델 추출 방법과 유사한 성능을 보이며 수행시간이 단축되는 것을 확인하였다.
본 연구에서는 건물이 혼재한 준 도심 지역에서 발생할 수 있는 재난/재해를 가정하여 네트워크 RTK (Real Time Kinematic) 측위가 가능한 무인기를 이용한 항공삼각측량의 정확도를 평가하였다. 검사점 측위의 신뢰성을 확보하기 위해 검사점을 건물의 옥상에 설치하여 네 시간 이상의 GNSS (Global Navigation Satellite System) 정적 측위를 수행하였다. 객관적인 정확도 평가를 위해 소프트웨어에서 자동으로 인식 가능한 코드화된 대공 타겟을 사용하였다. 무인기에서는 네트워크 RTK 측위의 일종인 VRS (Virtual Reference Station) 방식을 이용하여 영상 취득 당시 카메라의 3차원 좌표를 측정하였고, IMU (Inertial Measurement Unit)와 짐벌 회전각 측정을 통해 카메라의 3축 회전각을 측정하였다. Agisoft Metashape를 이용하여 내·외부 표정요소를 추정·갱신한 결과, 항공삼각측량의 3차원 RMSE (Root Mean Square Error)는 영상의 중복도와 촬영 각도의 조합에 따라 크게는 0.153 m에서 작게는 0.102 m로 나타났다. 더욱 높은 수준의 항공삼각측량 정확도를 확보하기 위해서는 연직 영상의 중복도를 높이는 것이 일반적이나 경사 영상을 추가하는 것이 효과적인 것으로 나타났다. 따라서 대응 단계의 재난/재해 현장에서 긴급하게 무인기 매핑을 수행할 경우 중복도를 높이기 보다는 경사 영상도 함께 취득할 필요가 있다.
대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
/
pp.140-148
/
2001
일반적으로 위성영상의 센서에 대한 모델은 촬영대상지역의 지상기준점을 이용하여 결정하며, 이와 같은 지상기준점은 기존 지형도를 이용하거나 또는 지상측량에 의하여 획득한다. 그러나 지구관측위성에서 얻어진 영상의 촬영지역이 비접근 지역인 경우에는 지상측량에 의하여 지상기준점을 획득하기 어려우며, 또한 대상지역의 지형도가 제작되어 있지 않은 경우에는 실질적으로 위성영상을 이용하여 지형정보를 추출하기 어려운 실정이다. 본 논문은 지상기준점의 취득이 어려운 비접근 지역에 대한 위성영상에서 지형정보를 획득하기 위한 방법을 제시하였다. 먼저, 공선조건식을 기반으로 10개의 위성센서모델을 개발하고, 개발된센서모델의 거동을 분석하기 위하여 Space Resection 및 Space Inetersection을 통해 각각의 센서모델에 대한 적합성을 실험하였다. 이를 바탕으로 비접근 지역에 대한 지형정보를 취득하기 위하여 영상을 재구성하거나 Pseudo 영상을 제작하고, 이에 대한 센서모델의 거동 및 정확도를 분석.제시하였다. 공선조건식을 이용한 Pushbroom 위성영상의 센서모델은 투영 중심의 위치와 회전요소에 대한 6개의 외부표정요소와 상관도가 높은 회전요소($\omega$, $\phi$)를 고정된 값으로 사용하는 센서모델을 개발하였다. 비접근 지역의 영상으로부터 Pseudo 영상을 임의로 제작하여 패스내에서 중복영역을 갖도록 구성하였다. 본 연구에서 이용한 인공위성 데이터는 서로 다른 패스에서 동일한 지역을 촬영한 SPOT 영상이며, 각각의 패스에서 두 장의 연속된 영상을 이용하였다. 개발된 10개의 센서모델과 5가지의 영상 재구성 방법에 따라 비접근 지역에서의 정확도는 다르게 나타났으며, 그 중 투영중심의 위치 및 회전요소 k를 1차 함수로 표현하고 회전요소 $\omega$, $\phi$를 고정시킨 센서모델과 Pseudo 영상을 이용한 방법이 비접근 지역 60km 지점의 검사점에서 최대오차 60m의 결과를 보였다.
본 논문은 지상기준접의 취득이 어려운 비접근 지역에 대한 위성영상에서 지형정보를 획득하기 위한 방법을 제시하였다. 먼저, 공선조건식을 기반으로 10개의 위성센서모델을 개발하고, 개발된 센서모델의 거동을 부석하기 위하여 Space Resection 및 Space Intersection을 통해 각각의 센서모델에 대한 적합성을 실험하였다. 이를 바탕으로 비접근 지역에 대한 지형정보를 취득하기 위하여 영상을 재구성하거나 Pseudo영상을 제작하고, 이에 대한 센서모델의 거동 및 정확도를 분석.제시하였다. 공선조건식을 이용한 Pushbroom 위성영상의 센서모델은 투영중심의 위치와 회전요소에 대한 6개의 외부표정요소를 영상의 행에 대한 1차, 2차 함수 또는 3차 함수로 구성하였으며, 또한 외부표정요소의 위치요소와 상관도가 높은 회전요소($\omega$, $\Phi$)를 고정된 값으로 사용하는 센서모델을 개발하였다. 비접근 지역을 위한 영상의 재구성은 동일 패스의 지상기준접이 있는 영상과 비접근 지역의 영상을 연결시켜 하나의 영상으로 재구성하거나, 지상기준점이 있는 영상과 비접근 지역의 영상으로부터 Pseudo영상을 임의로 제작하여 패스내에서 중복영역을 갖도록 구성하였다. 본 연구에서 이용한 인공위성 데이터는 서로 다른 패스에서 동일한 지역을 촬영한 SPOT 영상이며, 각각의 패스에서 두장의 연속된 영상을 이용하였다. 개발된 10개의 센서모델과 5가지의 영상 재구성 방법에 따라 비접근 지역에서의 정확도는 다르게 나타났으며, 그 중 투영중심의 위치 및 회전요소 k를 1차 함수로 표현하고 회전요소 $\omega$, $\Phi$를 고정시킨 센서모델과 Pseudo영상을 이용한 방법이 비접근 지역 30km, 60km지점의 검사점에서 각각 최대오차 30m, 60m의 결과를 보였다. 얻어진 극한하중 보다 적은 경향을 나타냈다.aeuntang were higher than the recommended value per meal. Vitamin A, vitamin C, vitamin B$_1$, vitamin B, niacin, calcium, phosphorus and iron were rich in chwotang and minmulgokimaeuntag. Onhuk contains plenty of vitamin C, vitamin B$_1$, vitamin B$_2$and the contents of vitamin A, vitamin B$_1$, and niacin in baekhapapchuk were over the recommended values per meal. The foods contained large percentage of aspartic acid and glutamic acid, and major essential amino acids appeared to be leucine and lysine. On the other hand, major fatty acids were oleic acid, linoleic acid and plamitic acid. Among them the content of oleic acid was the highest in chuotang, ochuk and baekhapchuk, whereas linoleic acid and palmitic acid were the most rich fatty acids in baekhapchuk and dasulgitang respectively.한 있을 것으로 생각된다. 그리고 본 조사는 5월부터 7월중에 실시하였는데, 한국의 경우 계절에 따라 섭취 식품의 종류가 다
정사영상 생성을 위한 많은 연구들이 진행되어 왔다. 기존의 방법은 정사영상을 제작할 경우, 폐색지역을 탐지하고 복원하기 위해 항공영상의 외부표정요소와 정밀 3D 객체 모델링 데이터가 필요하며, 일련의 복잡한 과정을 자동화하는 것은 어렵다. 본 논문에서는 기존의 방법에서 탈피하여 딥러닝(DL)을 이용하여 엄밀정사영상을 제작하는 새로운 방법을 제안하였다. 딥러닝은 여러 분야에서 더욱 급속하게 활용되고 있으며, 최근 생성적 적대 신경망(GAN)은 영상처리 및 컴퓨터비전 분야에서 많은 관심의 대상이다. GAN을 구성하는 생성망은 실제 영상과 유사한 결과가 생성되도록 학습을 수행하고, 판별망은 생성망의 결과가 실제 영상으로 판단될 때까지 반복적으로 수행한다. 본 논문에서 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 라이다 반사강도 데이터와 적외선 정사영상을 GAN기반의 Pix2Pix 모델 학습에 사용하여 엄밀정사영상을 생성하는 두 가지 방법을 제안하였다. 첫 번째 방법은 라이다 반사강도영상을 입력하고 고해상도의 정사영상을 목적영상으로 사용하여 학습하는 방식이고, 두 번째 방법에서도 입력영상은 첫 번째 방법과 같이 라이다 반사강도영상이지만 목적영상은 라이다 점군집 데이터에 칼라를 지정한 저해상도의 영상을 이용하여 재귀적으로 학습하여 점진적으로 화질을 개선하는 방법이다. 두 가지 방법으로 생성된 정사영상을 FID(Fréchet Inception Distance)를 이용하여 정량적 수치로 비교하면 큰 차이는 없었지만, 입력영상과 목적영상의 품질이 유사할수록, 학습 수행 시 epoch를 증가시키면 우수한 결과를 얻을 수 있었다. 본 논문은 딥러닝으로 엄밀정사영상 생성 가능성을 확인하기 위한 초기단계의 실험적 연구로서 향후 보완 및 개선할 사항을 파악할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.