• 제목/요약/키워드: Extended hypergeometric function

검색결과 34건 처리시간 0.021초

GENERALIZATION OF EXTENDED BETA FUNCTION, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Lee, Dong-Myung;Rathie, Arjun K.;Parmar, Rakesh K.;Kim, Yong-Sup
    • 호남수학학술지
    • /
    • 제33권2호
    • /
    • pp.187-206
    • /
    • 2011
  • The main object of this paper is to present generalization of extended beta function, extended hypergeometric and confluent hypergeometric function introduced by Chaudhry et al. and obtained various integral representations, properties of beta function, Mellin transform, beta distribution, differentiation formulas transform formulas, recurrence relations, summation formula for these new generalization.

EXTENSION OF EXTENDED BETA, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Rathie, Arjun K.;Parmar, Rakesh K.
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.357-385
    • /
    • 2014
  • Recently several authors have extended the Gamma function, Beta function, the hypergeometric function, and the confluent hypergeometric function by using their integral representations and provided many interesting properties of their extended functions. Here we aim at giving further extensions of the abovementioned extended functions and investigating various formulas for the further extended functions in a systematic manner. Moreover, our extension of the Beta function is shown to be applied to Statistics and also our extensions find some connections with other special functions and polynomials such as Laguerre polynomials, Macdonald and Whittaker functions.

AN EXTENSION OF THE WHITTAKER FUNCTION

  • Choi, Junesang;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.705-714
    • /
    • 2021
  • The Whittaker function and its diverse extensions have been actively investigated. Here we aim to introduce an extension of the Whittaker function by using the known extended confluent hypergeometric function 𝚽p,v and investigate some of its formulas such as integral representations, a transformation formula, Mellin transform, and a differential formula. Some special cases of our results are also considered.

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali;Naresh Kumar Regar;Subrat Parida
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.313-334
    • /
    • 2024
  • In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.

CERTAIN IMAGE FORMULAS OF (p, 𝜈)-EXTENDED GAUSS' HYPERGEOMETRIC FUNCTION AND RELATED JACOBI TRANSFORMS

  • Chopra, Purnima;Gupta, Mamta;Modi, Kanak
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1055-1072
    • /
    • 2022
  • Our aim is to establish certain image formulas of the (p, 𝜈)-extended Gauss' hypergeometric function Fp,𝜈(a, b; c; z) by using Saigo's hypergeometric fractional calculus (integral and differential) operators. Corresponding assertions for the classical Riemann-Liouville(R-L) and Erdélyi-Kober(E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, 𝜈)-extended Gauss's hypergeometric function Fp,𝜈(a, b; c; z) and Fox-Wright function rΨs(z). We also established Jacobi and its particular assertions for the Gegenbauer and Legendre transforms of the (p, 𝜈)-extended Gauss' hypergeometric function Fp,𝜈(a, b; c; z).

EXTENDED HYPERGEOMETRIC FUNCTIONS OF TWO AND THREE VARIABLES

  • AGARWAL, PRAVEEN;CHOI, JUNESANG;JAIN, SHILPI
    • 대한수학회논문집
    • /
    • 제30권4호
    • /
    • pp.403-414
    • /
    • 2015
  • Extensions of some classical special functions, for example, Beta function B(x, y) and generalized hypergeometric functions $_pF_q$ have been actively investigated and found diverse applications. In recent years, several extensions for B(x, y) and $_pF_q$ have been established by many authors in various ways. Here, we aim to generalize Appell's hypergeometric functions of two variables and Lauricella's hypergeometric function of three variables by using the extended generalized beta type function $B_p^{({\alpha},{\beta};m)}$ (x, y). Then some properties of the extended generalized Appell's hypergeometric functions and Lauricella's hypergeometric functions are investigated.

GENERATING FUNCTIONS FOR THE EXTENDED WRIGHT TYPE HYPERGEOMETRIC FUNCTION

  • Jana, Ranjan Kumar;Maheshwari, Bhumika;Shukla, Ajay Kumar
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.75-84
    • /
    • 2017
  • In recent years, several interesting families of generating functions for various classes of hypergeometric functions were investigated systematically. In the present paper, we introduce a new family of extended Wright type hypergeometric function and obtain several classes of generating relations for this extended Wright type hypergeometric function.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

Certain Fractional Integral Operators and Extended Generalized Gauss Hypergeometric Functions

  • CHOI, JUNESANG;AGARWAL, PRAVEEN;JAIN, SILPI
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.695-703
    • /
    • 2015
  • Several interesting and useful extensions of some familiar special functions such as Beta and Gauss hypergeometric functions and their properties have, recently, been investigated by many authors. Motivated mainly by those earlier works, we establish some fractional integral formulas involving the extended generalized Gauss hypergeometric function by using certain general pair of fractional integral operators involving Gauss hypergeometric function $_2F_1$, Some interesting special cases of our main results are also considered.