• Title/Summary/Keyword: Extended converter topologies

Search Result 5, Processing Time 0.018 seconds

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

Current-Programmed Control of Three Phase PWM AC-AC Boost Converter

  • Choi, Nam-Sup;Li, Yulong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.414-416
    • /
    • 2005
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation. Finally, the experiment result shows the validity of the proposed scheme.

  • PDF

An Extended Switched-inductor Quasi-Z-source Inverter

  • Deng, Kai;Mei, Fei;Mei, Jun;Zheng, Jianyong;Fu, Guangxu
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.541-549
    • /
    • 2014
  • In this paper, an extended switched-inductor quasi-Z-source inverter (ESL-qZSI) with high boost voltage inversion ability is presented, which combines the SL-qZSI with the traditional boost converter, as well as improves the switched-inductor cell. Compared with the classic qZSI topologies, the proposed topology reduces the voltage stresses of capacitors, power devices and diodes for the same input and output voltage. Furthermore, the conversion efficiency is improved. The operation principle of the proposed topology is analyzed in details, which is followed by the comparison between the three topologies. In addition, the performance of the proposed topology is verified by simulations and experiments.

DSP-based Current Programmed Control of Three Phase PWM AC-AC Boost Converter (3상 PWM AC-AC 부스트 컨버터의 DSP 기반 전류 프로그램 제어)

  • Choi Nam-Sup;Li Yulong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order, inherent current protection and robust output. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation and to establish some important characteristic equations for control purpose. The experiment results show the validity of the proposed scheme.

Novel Predictive Current Control Pulse Width Modulation Method for Matrix Convertors (매트릭스 컨버커를 위한 새로운 예측 전류제어 펄폭 변조 방법)

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon;Yang, Seung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.65-67
    • /
    • 2008
  • A new pulse width modulation method based on predictive current control strategy is proposed to modulate matrix converters. The predictive current controller utilizes a discrete-time model to predict the future values of output currents and generates proper duty-ratios ta minimize the output current errors. The proposed method uses continuous carrier and establishes a predictive current controller to predetermine duty ratio signal for directly generating gating signals an thus is named "predictive current control PWM(PCCPWM)". The modulation algorithm nd the required equations are derived by using average concept over one switching period. Thus it can be easily extended to other matrix converter topologies, especially with neutral connections, such as sing le-phase ad two-phase matrix converters. The feasibility and validity of the proposed strategy are verified by computer simulation and experimental results.

  • PDF