• Title/Summary/Keyword: Expression Network

Search Result 980, Processing Time 0.033 seconds

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.

A Facial Expression Recognition Method Using Two-Stream Convolutional Networks in Natural Scenes

  • Zhao, Lixin
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.399-410
    • /
    • 2021
  • Aiming at the problem that complex external variables in natural scenes have a greater impact on facial expression recognition results, a facial expression recognition method based on two-stream convolutional neural network is proposed. The model introduces exponentially enhanced shared input weights before each level of convolution input, and uses soft attention mechanism modules on the space-time features of the combination of static and dynamic streams. This enables the network to autonomously find areas that are more relevant to the expression category and pay more attention to these areas. Through these means, the information of irrelevant interference areas is suppressed. In order to solve the problem of poor local robustness caused by lighting and expression changes, this paper also performs lighting preprocessing with the lighting preprocessing chain algorithm to eliminate most of the lighting effects. Experimental results on AFEW6.0 and Multi-PIE datasets show that the recognition rates of this method are 95.05% and 61.40%, respectively, which are better than other comparison methods.

Facial Expression Recognition Method Based on Residual Masking Reconstruction Network

  • Jianing Shen;Hongmei Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2023
  • Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.

A Study on Comic Expression of Social Network Game (소셜네트워크게임의 만화적 표현연구)

  • Lee, Hyun-Woo;Kim, Sung-Nam;Kim, Byung-Ok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.527-530
    • /
    • 2011
  • This Paper studied out prototype and the structure of comic expression on Social Network Game and started with issues based on SNS(Social Network Service) in Culture Communication. Interaction with the platform have the information that aims to develop relationships with SNG. In a world where the paradigm is changing the game People of all ages, transcending national borders in the mediator role of interaction could have been important. Today SNG is a major topic in Game Contents and this issue has influenced the game design and Story Telling. Under this Situation, this study has a significant meaning because it proves that the factors Comic Expression in game is analyzed by SNG.

  • PDF

Redox Factor-1 Inhibits Cyclooxygenase-2 Expression via Inhibiting of p38 MAPK in the A549 Cells

  • Yoo, Dae-Goon;Kim, Cuk-Seong;Lee, Sang-Ki;Kim, Hyo-Shin;Cho, Eun-Jung;Park, Myoung-Soo;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.139-144
    • /
    • 2010
  • In this study, we evaluated the role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) induced cyclooxygenase-2 (COX-2) expression using A549 lung adenocarcinoma cells. TNF-$\alpha$ induced the expression of COX-2 in A549 cells, but did not induce BEAS-2B expression. The expression of COX-2 in A549 cells was TNF-$\alpha$ dose-dependent (5~100 ng/ml). TNF-$\alpha$-stimulated A549 cells evidenced increased Ref-1 expression in a dose-dependent manner. The adenoviral transfection of cells with AdRef-1 inhibited TNF-$\alpha$-induced COX-2 expression relative to that seen in the control cells ($Ad{\beta}gal$). Pretreatment with $10\;{\mu}M$ of SB203580 suppressed TNF-$\alpha$-induced COX-2 expression, thereby suggesting that p38 MAPK might be involved in COX-2 expression in A549 cells. The phosphorylation of p38 MAPK was increased significantly after 5 minutes of treatment with TNF-$\alpha$, reaching a maximum level at 10 min which persisted for up to 60 min. However, p38MAPK phosphorylation was markedly suppressed in the Ref-1-overexpressed A549 cells. Taken together, our results appear to indicate that Ref-1 negatively regulates COX-2 expression in response to cytokine stimulation via the inhibition of p38 MAPK phosphorylation. In the lung cancer cell lines, Ref-1 may be involved as an important negative regulator of inflammatory gene expression.

Reverting Gene Expression Pattern of Cancer into Normal-Like Using Cycle-Consistent Adversarial Network

  • Lee, Chan-hee;Ahn, TaeJin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.275-283
    • /
    • 2018
  • Cancer show distinct pattern of gene expression when it is compared to normal. This difference results malignant characteristic of cancer. Many cancer drugs are targeting this difference so that it can selectively kill cancer cells. One of the recent demand for personalized treating cancer is retrieving normal tissue from a patient so that the gene expression difference between cancer and normal be assessed. However, in most clinical situation it is hard to retrieve normal tissue from a patient. This is because biopsy of normal tissues may cause damage to the organ function or a risk of infection or side effect what a patient to take. Thus, there is a challenge to estimate normal cell's gene expression where cancers are originated from without taking additional biopsy. In this paper, we propose in-silico based prediction of normal cell's gene expression from gene expression data of a tumor sample. We call this challenge as reverting the cancer into normal. We divided this challenge into two parts. The first part is making a generator that is able to fool a pretrained discriminator. Pretrained discriminator is from the training of public data (9,601 cancers, 7,240 normals) which shows 0.997 of accuracy to discriminate if a given gene expression pattern is cancer or normal. Deceiving this pretrained discriminator means our method is capable of generating very normal-like gene expression data. The second part of the challenge is to address whether generated normal is similar to true reverse form of the input cancer data. We used, cycle-consistent adversarial networks to approach our challenges, since this network is capable of translating one domain to the other while maintaining original domain's feature and at the same time adding the new domain's feature. We evaluated that, if we put cancer data into a cycle-consistent adversarial network, it could retain most of the information from the input (cancer) and at the same time change the data into normal. We also evaluated if this generated gene expression of normal tissue would be the biological reverse form of the gene expression of cancer used as an input.

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong;Cho, Yong-Min;Lee, Seung-Hwan;Chai, Han-Ha;Kim, Tae-Hun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 2013
  • Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

Pathway and Network Analysis in Glioma with the Partial Least Squares Method

  • Gu, Wen-Tao;Gu, Shi-Xin;Shou, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3145-3149
    • /
    • 2014
  • Gene expression profiling facilitates the understanding of biological characteristics of gliomas. Previous studies mainly used regression/variance analysis without considering various background biological and environmental factors. The aim of this study was to investigate gene expression differences between grade III and IV gliomas through partial least squares (PLS) based analysis. The expression data set was from the Gene Expression Omnibus database. PLS based analysis was performed with the R statistical software. A total of 1,378 differentially expressed genes were identified. Survival analysis identified four pathways, including Prion diseases, colorectal cancer, CAMs, and PI3K-Akt signaling, which may be related with the prognosis of the patients. Network analysis identified two hub genes, ELAVL1 and FN1, which have been reported to be related with glioma previously. Our results provide new understanding of glioma pathogenesis and prognosis with the hope to offer theoretical support for future therapeutic studies.

Gene Expression Signatures for Compound Response in Cancers

  • He, Ningning;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.173-180
    • /
    • 2011
  • Recent trends in generating multiple, large-scale datasets provide new challenges to manipulating the relationship of different types of components, such as gene expression and drug response data. Integrative analysis of compound response and gene expression datasets generates an opportunity to capture the possible mechanism of compounds by using signature genes on diverse types of cancer cell lines. Here, we integrated datasets of compound response and gene expression profiles on NCI60 cell lines and constructed a network, revealing the relationship for 801 compounds and 341 gene probes. As examples, obtusol, which shows an exclusive sensitivity on a small number of colon cell lines, is related to a set of gene probes that have unique overexpression in colon cell lines. We also found that the SLC7A11 gene, a direct target of miR-26b, might be a key element in understanding the action of many diverse classes of anticancer compounds. We demonstrated that this network might be useful for studying the mechanisms of varied compound response on diverse cancer cell lines.

ORMN: A Deep Neural Network Model for Referring Expression Comprehension (ORMN: 참조 표현 이해를 위한 심층 신경망 모델)

  • Shin, Donghyeop;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a new deep neural network model for referring expression comprehension. The proposed model finds out the region of the referred object in the given image by making use of the rich information about the referred object itself, the context object, and the relationship with the context object mentioned in the referring expression. In the proposed model, the object matching score and the relationship matching score are combined to compute the fitness score of each candidate region according to the structure of the referring expression sentence. Therefore, the proposed model consists of four different sub-networks: Language Representation Network(LRN), Object Matching Network (OMN), Relationship Matching Network(RMN), and Weighted Composition Network(WCN). We demonstrate that our model achieves state-of-the-art results for comprehension on three referring expression datasets.