• Title/Summary/Keyword: Exposure biomarker

Search Result 183, Processing Time 0.042 seconds

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Assessment of Inhalation Exposure to Volatile Disinfection By-products Associated with Household Uses of Chlorinated Tap Water (가정에서의 수돗물 사용과 관련된 휘발성 염소소독부산물에 대한 흡입노출 평가)

  • 김희갑;김문숙;윤지현
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 2002
  • Volatile disinfection by-products (DBPs) contained in chlorinated tap water are released into household air during indoor activities (showering, cooking, dish -washing, etc.) associated with tap water uses and may cause adverse health effects on humans. Twenty seven subjects were recruited and their homes were visited during the winter of 2002. Tap water, household air, and exhaled breath samples were collected and analyzed for five volatile DBPs (chloroform, bromodichloromethane, dichloroacetonitrile, 1,1 -dichloropropanone and 1,1,1 trichloropropanone). Chloroform was a major DBP found in most samples. Tap water chloroform concentrations were not statistically correlated with its household air concentrations, probably due to individual variability in indoor activities such as showering, cooking, and dish - washing as well as household ventilation. Correlation of breath chloroform concentration with household air chloroform concentration showed its possible use as a biomarker of exposure to household air chloroform. Exposure estimates suggested that inhalation during household stay be a major route of exposure to volatile DBPs and that ingestion of tap water be a trivial contributor to the total exposure in Koreans.

The Expression of Hsp70 and GST Genes in Mytilus coruscus during Air Exposure and Starvation (공기노출 및 절식시기 동안 참담치, Mytilus coruscus 에서 Hsp70 및 GST 유전자 발현에 대한 연구)

  • Kim, Chul Won;Kang, Han Seung
    • The Korean Journal of Malacology
    • /
    • v.32 no.2
    • /
    • pp.73-81
    • /
    • 2016
  • Heat shock proteins (HSPs), one of the most highly conserved groups of proteins characterized to date, play crucial roles in protecting cells against environmental stresses, such as heat shock, salinity and oxidative stress. The glutathione S-transferases (GST) have important role in detoxification of oxidative stress, environmental chemicals and environmental stress. GST mRNA expression have been used as biomarkers on environmental stress. The purpose of this study was to investigate the death rate and the gene expression of Hsp70 and GST during air exposure and starvation. Results showed that, the expression of Hsp70 mRNA was significantly changed in the experiment groups, such as air exposure and starvation. GST mRNA expression was significantly increased in the experimental group of starvation. These results suggest that Hsp70 and GST were played roles in biomarker gene on the air exposure and starvation.

APPLICATION OF METABOLITE PROFILE KINETICS FOR EXPOSURE AND RISK ASSESSMENT

  • Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.34-45
    • /
    • 2006
  • Chemical toxicants are metabolically converted to numerous metabolites in the body. Toxicokinetic characteristics of metabolites could be therefore used as biomarker of exposure for human risk assessment. Biologically based dose response (BBDR) model was proposed for future direction of risk assessment. However, this area has not been developed well enough for human application. Benzo(a)pyrene (BP), for example, is a well-known environmental carcinogen and may produce more than 100 metabolites and BPDE-DNA adduct, a covalently bound form of DNA with benzo(a)pyrene diolepoxides (BPDES), has been applied to qualitatively or quantitaively estimate human exposure to BP. In addition, di(2-ethylhexyl) phthalate (DEHP), a widely used plasticize. in the polymer industry, is one of endocrine-disrupting chemicals (EDCs) and has been monitored in humans using urinary or serum concentrations of DEHP or its monomer MEHP for exposure and risk assessment. However, it is difficult to estimate the actual level of toxicants using these biomarkers in humans using. This presentation will discuss a methodology of exposure and risk assessment by application of metabolic profiling kinetics.

  • PDF

Preliminary Investigation into Urinary 1-Hydroxypyrene as a Biomarker for Polycyclic Aromatic Hydrocarbons exposure among Charcoal Workers in Ogun and Oyo States, Nigeria

  • Olujimi, O.O.;Ogunseye, O.O.;Oladiran, K.O.;Ajakore, S.D.
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.416-420
    • /
    • 2018
  • Background: Urinary 1-hydroxypyrene (1-OHP) has been widely used as a biomarker of polycyclic aromatic hydrocarbons (PAHs) in occupationally exposed workers. The objective of this study is to investigate the concentration of urinary 1-OHP among charcoal workers as subjects and non-charcoal workers as controls. Methods: Early morning urine samples were collected from 68 persons (25 charcoal workers in Igbo-Ora, 20 charcoal workers in Alabata, and 23 non-charcoal workers) who volunteered to participate in this study. 1-OHP determination in urine samples was carried out using high performance liquid chromatography after hydrolysis. Descriptive and inferential statistics were used for data analysis at p < 0.05. Results: The mean urinary 1-OHP concentration (${\mu}mol/mol$ creatinine) among charcoal workers at Igbo-Ora and Alabata and non-charcoal workers were $2.22{\pm}1.27$, $1.32{\pm}0.65$, and $0.32{\pm}0.26$ (p < 0.01). There existed a relationship between respondent type and 1-OHP concentration. Charcoal workers were 3.14 times more at risk of having 1-OHP concentrations that exceed the American Conference of Governmental Industrial Hygienists guideline of $0.49{\mu}mol/mol$ creatinine than non-charcoal workers (relative risk = 3.14, 95% confidence interval: 1.7-5.8, p < 0.01). Conclusion: Charcoal workers are exposed to PAHs during charcoal production and are at risk of experiencing deleterious effects of PAH exposure. Routine air quality assessment should be carried out in communities where charcoal production takes place. Assessment of urinary 1-OHP concentration and use of personal protective equipment should also be encouraged among charcoal workers.

Environmental Tobacco Smoke Exposure of Workers at Restaurants in Seoul Metropolitan City (서울시 일부 음식점 종업원의 간접흡연 노출량 측정)

  • 고영림;양원호;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.173-182
    • /
    • 2002
  • Exposure to environmental tobacco smoke(ETS) increases the risk of lung cancer and other diverse health effect for nonsmokers. Health risk assessment of nonsmokers related to ETS exposure requires large and exact data of ETS exposure to nonsmokers. This study presented the data of ETS exposure to workers at three category of restaurants(Korean restaurant, coffee shop, wine shop) in Seoul. Markers of ETS exposure measured in this study were area and personal NO$_2$, area and urine nicotine, area respiratory suspended particulate(RSP) and urine cotinine. The mean concentration of RSP and nicotine of all restaurant indoor samples was 177.8$\mu\textrm{g}$/㎥(range:75.3~317.0$\mu\textrm{g}$/㎥) and 7.8$\mu\textrm{g}$/㎥(range:0~57.3$\mu\textrm{g}$/㎥). The mean concentration of urine cotinine measured for the biomarker of ETS exposure was 77.3ng/mL(range:17.3~174.6ng/mL). In all measurements, the concentration of ETS markers at the wine shop was higher than those at other restaurants. The correlation coefficient among the ETS markers measured in the study was significant between area RSP and nicotine concentration and between area NO$_2$and nicotine concentration.