• Title/Summary/Keyword: Exposure Dose

Search Result 2,218, Processing Time 0.025 seconds

Evaluation of exposure to ionizing radiation of medical staff performing procedures with glucose labeled with radioactive fluorine - 18F-FDG

  • Michal Biegala;Marcin Brodecki;Teresa Jakubowska;Joanna Domienik-Andrzejewska
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.335-339
    • /
    • 2024
  • Employees of nuclear medicine facilities performing medical procedures with the use of open radioactive sources require continuous detailed control of exposure to ionizing radiation. Thermoluminescent (TL) detectors placed in dosimeters: for the whole body, for lenses, ring and wrist dosimeters were used to assess exposure. The highest whole-body exposure of (1.70 ± 1.09) µSv/GBq was recorded in nurses administering radiopharmaceutical to patients. The highest exposure to lenses and fingers was recorded for employees of the quality control zone and it was (8.08 ± 2.84) µSv/GBq and a maximum of (1261.46 ± 338.93) µSv/GBq, respectively. Workers in the production zone received the highest doses on their hands, i.e. (175.67 ± 13.25) µSv/GBq. The measurements performed showed that the analyzed workers may be classified as exposure category A. Wrist dosimeters are not recommended for use in isotope laboratories due to underestimation of ionizing radiation doses. Appropriately selected shields, which significantly reduce the dose received by employees, must be used in isotope laboratories. Periodic measurements confirmed that the appropriate optimization of exposure reduces the radiation doses received by employees.

Mesothelioma in Sweden: Dose-Response Analysis for Exposure to 29 Potential Occupational Carcinogenic Agents

  • Plato, Nils;Martinsen, Jan I.;Kjaerheim, Kristina;Kyyronen, Pentti;Sparen, Par;Weiderpass, Elisabete
    • Safety and Health at Work
    • /
    • v.9 no.3
    • /
    • pp.290-295
    • /
    • 2018
  • Background: There is little information on the dose-response relationship between exposure to occupational carcinogenic agents and mesothelioma. This study aimed to investigate this association as well as the existence of agents other than asbestos that might cause mesothelioma. Methods: The Swedish component of the Nordic Occupational Cancer (NOCCA) study consists of 6.78 million individuals with detailed information on occupation. Mesothelioma diagnoses recorded in 1961-2009 were identified through linkage to the Swedish Cancer Registry. We determined cumulative exposure, time of first exposure, and maximum exposure intensity by linking data on occupation to the Swedish NOCCA job-exposure matrix, which includes 29 carcinogenic agents and corresponding exposure for 283 occupations. To assess the risk of mesothelioma, we used conditional logistic regression models to estimate hazard ratios and 95% confidence intervals. Results: 2,757 mesothelioma cases were identified in males, including 1,416 who were exposed to asbestos. Univariate analyses showed not only a significant excess risk for maximum exposure intensity, with a hazard ratio of 4.81 at exposure levels 1.25-2.0 fb/ml but also a clear dose-response effect for cumulative exposure with a 30-, 40-, and 50-year latency time. No convincing excess risk was revealed for any of the other carcinogenic agents included in the Swedish NOCCA job-exposure matrix. Conclusion: When considering asbestos exposure, past exposure, even for short periods, might be enough to cause mesothelioma of the pleura later in life.

Buildup Characteristics of Radiophotoluminescent Glass Dosimeters with Exposure Time of X-ray (엑스선의 조사시간에 따른 형광유리선량계의 빌드업 특성)

  • Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.256-263
    • /
    • 2017
  • By using the buildup characteristics of the radiophotoluminescence glass dosimeter(RPLGD), it is aimed to help the measurement of the accurate dose by measuring the radiation dose according to the time of the glass element. Five glass elements were arranged on the table and the source to image receptor distance(SID) was set to 100 cm for the build-up radiation dose measurement of the fluorescent glass dosimeter glass element(GD-352M). Radiation doses and saturation rates were measured over time according to irradiation time, with the tube voltage (30, 60, 90 kVp) and tube current (50, 100 mAs) Repeatability test was repeated ten times to measure the coefficient of variation. The radiation dose increased from 0.182 mGy to 12.902 mGy and the saturation rate increased from 58.3% with increasing exposure condition and time. The coefficient of variation of the glass elements of the fluorescent glass dosimeter was ranged from 0.2 to 0.77 according to the X - ray exposure conditions. X - ray exposure showed that the radiation dose and saturation rate were increased with buildup characteristics, and degeneration of glass elements was not observed. The reproducibility of the variation coefficient of the radiation generator was included within the error range and the reproducibility of the radiation dose was excellent.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

A Comparative Analysis of Exposure Doses between the Radiation Workers in Dental and General Hospital (일반병원과 치과병원과의 방사선 관계종사자 피폭선량 비교분석)

  • Yang, Nam-Hee;Chung, Woon-Kwan;Dong, Kyung-Rae;Choi, Eun-Jin;Ju, Yong-Jin;Song, Ha-jin
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • Research and investigation is required for the exposure dose of radiation workers to work in the dental hospital as increasing interest in exposure dose of the dental hospital recently accordingly, study aim to minimize radiation exposure by making a follow-up study of individual exposure doses of radiation workers, analyzing the status on individual radiation exposure management, prediction the radiation disability risk levels by radiation, and alerting the workers to the danger of radiation exposure. Especially given the changes in the dental hospital radiation safety awareness conducted the study in order to minimize radiation exposure. This study performed analyses by a comparison between general and dental hospital, comparing each occupation, with the 116,220 exposure dose data by quarter and year of 5,811 subjects at general and dental hospital across South Korea from January 1, 2008 through December 31, 2012. The following are the results obtained by analyzing average values year and quarter. In term of hospital, average doses were significantly higer in general hospitals than detal ones. In terms of job, average doses were higher in radiological technologists the other workes. Especially, they showed statistically significant differences between radiological technologists than dentists. The above-mentioned results indicate that radiation workers were exposed to radiation for the past 5 years to the extent not exceeding the dose limit (maximum $50mSv\;y^{-1}$). The limitation of this study is that radiation workers before 2008 were excluded from the study. Objective evaluation standards did not apply to the work circumstance or condition of each hospital. Therefore, it is deemed necessary to work out analysis criteria that will be used as objective evaluation standard. It will be necessary to study radiation exposure in more precise ways on the basis of objective analysis standard in the furture. Should try to minimize the radiation individual dose of radiation workers.

Planning of Optimal Work Path for Minimizing Exposure Dose During Radiation Work in Radwaste Storage (방사성 폐기물 저장시설에서의 방사선 작업 중 피폭선량 최소화를 위한 최적 작업경로 계획)

  • Park, Won-Man;Kim, Kyung-Soo;Whang, Joo-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • Since the safety of nuclear power plant has been becoming a big social issue the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate does not depend on the location within a work space thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation doting radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, tile developed numerical method and simulation program could be useful tools in the planning of radiation work.

Study on the Exposure Field of Head and Neck with Measurement of X-ray dose Distribution for Dental Panoramic X-ray System (치과 파노라마 장치의 X선 공간선량분포 측정을 통한 두경부 피폭영역 조사에 대한 연구)

  • Oh, Yoonjin;Hong, Girang;Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Recently, As people's interest in the health of teeth is increased in the medical field changed into aging society, the number of times for the radiological diagnosis is increased. It can be said that the radiation exposure dose of Korean population is increased. It is also growing concern about radiation exposure. Therefore, the basic data for the dental panoramic X-ray system, its investigation and measuring the radiation dose is needed. In this study, we used ALOKA PDM-117 dosimeter and estimated a two-dimensional dose distribution of the dental panoramic X-ray system (VATEC Pax-400). Dose evaluation about the distribution is confirmed from the point of radiation exposure of a patient. Dose distribution of the dental panoramic X-ray system irradiated chin and the facial region to high dose as well as the parts of teeth. It was founded that the eye lens which are sensitive to radiation are exposed to unnecessary radiation, considering the effect of scattered radiation. The results of this study will be used more accurate dose assessment in a variety of object size and location of measuring dose.

A Study on Retrospective of External Radiation Exposure Dose by Optically Stimulated Luminescence of Smart Chip Card (스마트칩 카드을 이용한 광 자극 발광 특성 연구)

  • Park, Sang-Won;Yoo, Se-Jong
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Radiation is used for various purposes such as cancer therapy, research of industrial and drugs. However, in case of radiation accidents such as terrorism, collapsing nuclear plant by natural disasters like Fukushima in 2011, very high radiation does expose to human and could lead to death. For this reason, many people are concerning about radiation exposures. Therefore, assessment and research of retrospective radiation dose to human by various path is an necessary task to be continuously developed. Radiation exposure for workers in radiation fields can be generally measured using a personal exposure dosimeter such as TLD, OSLD. However, general people can't be measured radiation doses when they are exposed to radiation. And even if radiation fields workers, when they do not in possession personal dosimeter, they also can't be measured exposure dose immediately. In this study, we conduct retrospective research on reconstruction of dose after exposure by using smart chip card of personal items through Optically Stimulated Luminescence (OSL). The OSL signal of smart chip card shows linear response from 0.06 Gy to 15 Gy and results of fading rate 45 %, 48% for 24 and 48 hours due to the natural emission of radiation in sample, respectively. The minimum detectable limit (MDD) was 0.38 mGy. This values are expected to use as correction values for reconstruction of exposure dose.

X-선 발생장치 정류방식에 따른 출력특성에 관한 연구

  • Na, Gil-Ju;Baek, Su-Ung;Yang, Hyeon-Hun;Park, Gye-Chun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.126-126
    • /
    • 2009
  • X-ray high-voltage generator is the most important part that can decide the radiation exposure dose affecting a patient or operator according to the characteristic. If decrease of X-ray radiation exposure dose and output characteristic of high-voltage generator is unstable, a patient or operator must be exposed to more radiation. This study measures and analyzes the exposure dose reproducibility and output characteristic according to a change of tube current on the various rectification methods of diagnostic X-ray equipment. It can find that quality bastardize and output is increased if voltage of X-ray tube is increased. Exposure dose reproducibility according to output of X-ray equipment is extremely excellent in inverter type, and is stable in order of following three-phase, a single-phase and condenser method. This study can find that the reply incidence of high-voltage generator is generated due to difference in rectification method, noise occurs in X-ray due to that, quality of an image is decreased due to that, and medical diagnosis can be failed due to that.

  • PDF

The Study on Scattered Ray by C-arm in Operation Room (수술실 내 C-arm 장치의 산란선 분포에 대한 연구)

  • Park, Seung-Hyun;Park, Joo-Mi;Kim, Hyun-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • A radiation imaging system used in a surgery room is mainly using C-arm which is purposed to fluoroscope. C-arm is often use to watch an operation's accuracy and progress, but not only being bombed to this first beam but also affected to this scattered beam, so now we are look for the way to reduce bombed amount of doctor, nurses and radiological technologists. We measured the exposure dose in $0^{\circ}$ spot according to the distance to find out frequency distribution of scattered ray in an operation room and found the spot which has the same exposure dose from $30^{\circ}$ distance of all directions and wrote isodose curve. We analyzed the data and found out the sudden reduction of scattered ray according to the long direction also found out that scattered ray was not related to the directions. Operators must recognize the reduction of exposure dose. Because reducing scattered ray from all directions in an operation room is really difficult. So every operators must use shelters to reduce the exposure dose and notice the safety.

  • PDF