• Title/Summary/Keyword: Explosive Welding

Search Result 32, Processing Time 0.03 seconds

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

Underwater Explosive Welding of Stainless Steel and Magnesium Alloy (수중 충격파를 이용한 스테인레스 스틸과 마그네슘합금의 폭발용접에 관한 연구)

  • Lee, Joon-Oh;Kim, Young-Kook;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.221-225
    • /
    • 2012
  • Magnesium is one of the light weight materials, which can improve fuel economy and reduce emissions in automotive industry. Recently, magnesium alloys have gained considerable attention due to good mechanical properties. In this work, we have performed an explosive welding using the magnesium alloys (AZ31) and stainless steel (SUS 304). As a result, SUS304/AZ31 were successfully combined each other; however, a resolidified interlayer was observed at the point of welded layer. To reduce the resolidified interlayer, we have changed the thickness (0.5 mm and 1 mm) of stainless steel, distance (45 mm and 60 mm) between explosive and the center of materials and initial angle ($20^{\circ}$ and $30^{\circ}$) of explosive. In the case of the thickness 0.5 mm and angle of $30^{\circ}$, the resolidfied interlayer was not observed due to the increase of distance from the explosive. To accurately estimate the resolidified interlayer, electron probe micro-analyzer (EPMA) method and hardness were used. For the EPMA analysis, mixed materials were confirmed at the resolidified interlayer, and the measurement exhibited the middle value compared with the AZ31 and SUS304.

Ultrasonic Test Criterion for the Explosively Welded Fe-Naval Brass Bonding Quality (초음파법에 의한 폭발접합 이종금속 접합품질 판정레벨 설정에 관한 연구)

  • 장영권;백영남
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • An ultrasonic test method, as a nondestructive test is applied to ensure the clad interface quality assessment. According to the reference codes and standards, not only korea Industrial Standard(KS) but also American Society for Testing and Materials (ASTM) Standard, ultrasonic examination procedures use the pulse-echo, A-scan, back reflection signal drop method and/or side drilled reference hole used to establish the acceptance criteria of clad material test. But the variety of bonding materials and sizes makes it difficult to produce the reference blocks, or thus the criteria. In order to overcome these practical difficulties, new ultrasonic testing criterion is suggested. In this new method, the theoretical interface reflection signal amplitude level is calculated and suggested as an acceptance criteria with the back reflection signal set to 100% FSH(Full Screen Height) which is based on acoustic impedance mismatch at the clad interface for the explosive clad ultrasonic inspection. Applicability of suggested criterion, for the explosive clad Fe-Naval Brass with different bonding quality is confirmed to the pre-existed KS and ASTM specifications and verified by using SEM (Seanning Electron Microscope) micrograph. The results obtained by the suggested method is more conservative than the results according to the KS B 0234 and ASTM A 578 specifications The suggested method could be applicable to any other combination of explosive clad ultrasonic inspection.

  • PDF

The Basic Theory and Characteristics of Explosive Welding (폭발접합의 원리와 특성)

  • 강봉용;김희진
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 1993
  • 본 고에서는 폭발접합에 대한 원리, 접합계면 특성 및 접합공정에 영향을 미치는 변수들에 대하 여 기술하였다. 폭발접합은 접합장소에 대한 제약을 제외하고는 저렴한 시설 투자 및 간편한 방 법으로 고부가치의 제품을 생산할 수 있는 장점 때문에 선진 외국에서는 각종 산업분야에 필요한 제품을 생산하는데 많이 응용하고 있다. 현재 국내에서는 사용되고 있는 다양한 폭발접합제품을 전량수입에 의존하고 있는 실정이기 때문에 이를 국산화하기 위해서 폭발접합에 대한 기초적인 연구와 이의 응용에 대한 관심을 기울여야 할 것으로 사료된다.

  • PDF