DOI QR코드

DOI QR Code

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation

산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구

  • 김영국 (구마모토 대학 충격극한환경연구센터) ;
  • 강성승 (조선대학교 에너지자원공학과) ;
  • 조상호 (전북대학교 자원에너지공학과)
  • Received : 2012.02.15
  • Accepted : 2012.02.25
  • Published : 2012.02.29

Abstract

Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

본 논문은 폭약의 폭발현상을 이용한 폭발용접, 폭발성형과 충격분말고화기술의 기본적 원리와 실험방법, 실험결과에 대하여 기술한다. 타이타늄(Ti)과 스테인레스 강(Stainless steel, SUS 304) 판재의 폭발용접 실험결과, 두 재료 접촉면의 단면에서는 연속적인 젯(jet)모양의 파형이 관찰되었고, 두 금속판재의 설치 경사각도가 $15{\sim}20^{\circ}$ 이고 접착속도가 2,100~2,800 m/s인 경우에 최적의 접합조건을 보였다. 알루미늄(Al) 판재를 이용한 폭발성형 실험과 전형적인 가압성형 실험 결과를 비교분석하여, 폭발성형의 경우가 큰 곡률변형을 보여 가공성이 우수한 것으로 확인되었다. 끝으로 금속과 세라믹의 혼합분말($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$)에 대한 충격고화 실험법을 제안하고 실험을 수행한 결과, 고화체의 표면과 내부에 균열이 확인되지 않았으며 세라믹입자와 금속입자들의 강한 미세조직 결합이 형성되었다. 또한 충격분말고화실험에서 발생되는 폭약의 폭발에 의한 폭굉파와 수중 충격파의 전파 및 간섭현상을 분석하기 위하여 LS-Dyna 3D를 이용한 동적해석을 수행하였다. 그 결과, 물용기 내 벽면에서 반사된 수중충격파가 중앙부에서 중첩되어 폭약의 폭발압력보다 높은 20 GPa의 수중 충격압을 보여, 물용기 내부형상의 중요성을 입증하였다.

Keywords

References

  1. 성상철, 심상한, 이병일, 1997, 폭발용접의 원리와 응용, 대한용접접합학회지, Vol. 15, No. 6, pp. 13-23
  2. Rinehart J. S. and J. Pearson, 1963, Explosive working of metals, pergamon press, London.
  3. Ezra, A. A., 1973, Principles and practice of explosive metal working, Vol. I, Industrial Newspaper Limited, London.
  4. Crossland, B., 1982, Explosove welding of metals and Its applications, Clarendon, Oxford.
  5. Derivas, A. A., V. M. Kudinov and F. I. Maveenkov, 1967, Explosive welding, Combusion, Explosion, and Shock Waves, 3, 111-118.
  6. Prummer, R., 1988, Explosive compaction of metallic glass powders, Materials Science and Engineering 98, 461-463. https://doi.org/10.1016/0025-5416(88)90207-8
  7. Chiba, A., M. Fujita, M. Nishida, K. Imamura and R. Tomoshige, 1992, Underwater-Shock Consolidation of Difficult-to-consolidate Powders, in: M. A. Meyers, L. E. Murr, K. P. Staudhammer (Eds.), Shock-wave and high-strain-rate phenomena in materials, Marcel Dekker, New York, pp. 415-424.
  8. Ghizdavu V. and N. Marin, 2010, Explosive forming-Economical Technology for Aerospace strructures, INCAS BULLETIN, 2, 107-117.
  9. Kim Y., T. Ueda, K. Hokamoto and S. Itoh, 2009, Electric and microstructural characteristics of bulk ZnO fabricated by underwater shock compaction, Ceram. Inter. 35, 3247-3252. https://doi.org/10.1016/j.ceramint.2009.05.039
  10. Kim Y., H. Wada, Y. Lee, S. Itoh, 2010, Magnetization, magnetic transition and magnetic entropy changes of bulk $MnAs_1-Sb_x$ fabricated by underwater shock compaction, Mater. Sci. Eng B, 167, 114-118. https://doi.org/10.1016/j.mseb.2010.01.056