• Title/Summary/Keyword: Explosive Fire

Search Result 180, Processing Time 0.025 seconds

Analysis of Explosion Energy related to the Cause of Tianjin Explosion Accident in China (중국 텐진항 폭발사고 원인과 관련된 폭발 에너지 분석)

  • Kwon, Sangki;Kim, Ha Yung
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • On August 12, 2015, two huge explosions were accidently happened in Tianjin port, China. The explosion energies of the two explosions were similar to those of TNT 3 tons and TNT 21 tons. Until now, the cause of the explosions was not clearly announced but some guesses of the cause were released. One of the possible cause of the explosion is the generation of explosive acetylene gas from the chemical reaction between $CaC_2$ and spraying water to extinguish fire happened at the storage site of different chemical compounds. The explosion of acetylene gas might ignite the explosion of 800 tons of ammonium nitrate. In this study, the explosion due to the scenario was analyzed in order to check that such a chemical reaction can produce the huge explosion observed at the Tianjin accident.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.

Spalling Properties of High Performance Concrete Designed with the Various Types of Coarse Aggregate (굵은골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Heo, Young-Sun;Park, Yong-Kyu;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.95-98
    • /
    • 2006
  • This study investigates spalling properties of high performance concrete, 60MPa clan, made with the various types of coarse aggregate and adding ratio of polypropylene(PP) fiber. As experimental parameters, totally sixteen specimens of ${\phi}100{\times}200mm$ in size are prepared: one specimen for control without fiber, ten specimens with different coarse aggregate types, along with 0.05, 0.1, 0.15 percent of PP fiber in each. 1 hour fire test is conducted and then spalling appearance, spalling degree and residual compressive strength are examined. In addition, sit specimens made with two types of coarse aggregate site, along with same adding ratio of fiber are supplementally done, and only spalling properties is examined. Test results showed that control concrete and most specimens containing 0.05% of PP fiber exhibited 4 to 3 level of spalling degree, resulting severe explosive spalling, except for the specimen using basalt aggregate(Bc) showing 2 to 3 level of that. Especially, the Bc specimen containing 0.1% of the fiber exhibited that residual compressive strength value was 32%, which is 10% higher than other specimens using limestone or granite. Spalling resistance performance was also effective as aggregate size increase.

  • PDF

A Method of System Effectiveness Analysis for Remote-Operated Unmanned Ground Vehicles Using OneSAF (OneSAF를 이용한 원격조종 지상무인차량 체계효과분석 방법)

  • Han, Sang Woo;Pyun, Jai Jeong;Cho, Hyunsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.388-395
    • /
    • 2014
  • Nowadays unmanned ground systems are used in supporting of surveillance and explosive ordnance disposal. Also, we expect that will be used to remarkably enhance combat capability through network-based cooperative operations with other combat systems. In order to effectively develop those unmanned systems, we needs a systematic method to analyze combat effectiveness and validate required operation capabilities. In this paper, we propose a practical approach to simulate remote-operated unmanned ground systems by using OneSAF, an US-Army simulation framework. First of all, we design a simulation model of unmanned system by integrating with core components for wireless communications and remote control of mobility and fire. Next, we extend OneSAF functionality to create communication links that connects a remote controller with an unmanned vehicle and define a simulated behavior to operate unmanned vehicles via the communication links. Finally, we demonstrate the feasibility of the proposed model within OneSAF and summarize system effectiveness analysis results.

A Study on the Risk Assessment and Mitigation Plan about Fire Explosion of n-Pentane in EPS Process (EPS공정에서 발생하는 n-Pentane의 화재폭발에 대한 위험성평가 및 위험성 완화 대책에 관한 연구)

  • Seo, Min Su;Kim, Ki Sug;Kim, Bo Min;Kang, Dong Cheon;Kang, Kil Jae;Chon, Young Woo
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2018
  • 최근 전자제품 생산업체에서 EPS를 직접생산하게 되면서 EPS 공정이 증가하고 있다. EPS에는 펜탄이 포함되어 있으며, 펜탄은 하이브리드 혼합물로 구분할 수 있어 높은 화재폭발의 위험성을 가지고 있다. 각 공정별 펜탄의 누출률은 발포기, 사일로실, 저장실 순이나 발포기의 경우 일반적으로 밀폐되어 있으므로 사일로 실이 가장 화재폭발 위험성이 높다고 판단하였다. 사일로실의 누출률 중 70%는 사일로 상단을 통해 누출되며, 사일로 상단을 통해 누출되는 펜탄의 거동을 분석하여 사일로실 위험성 완화대책을 수립하였다. 1. 폭발위험구역 2종으로 관리, 2. 사일로상단 50cm이내 환기설비 설치 또는 Push-Pull 구조의 환기설비설치, 3. 사일로 하단 1.4m이내에 가스감지기 설치, 4. 60%이상의 습도유지

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

Multi-Objective Optimization Study of Blast Wall Installation for Mitigation of Damage to Hydrogen Handling Facility (수소 취급시설 피해 저감을 위한 방호벽 설치 다목적 최적화 연구)

  • Se Hyeon Oh;Seung Hyo An;Eun Hee Kim;Byung Chol Ma
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • Hydrogen is gaining attention as a sustainable and renewable energy source, potentially replacing fossil fuels. Its high diffusivity, wide flammable range, and low ignition energy make it prone to ignition even with minimal friction, potentially leading to fire and explosion risks. Workplaces manage ignition risks by classifying areas with explosive atmospheres. However, the effective installation of a blast wall can significantly limit the spread of hydrogen, thereby enhancing workplace safety. To optimize the wall installation of this barrier, we employed the response surface methodology (RSM), considering variables such as wall distance, height, and width. We performed 17 simulations using the Box-Behnken design, conducted using FLACS software. This process yielded two objective functions: explosion likelihood near the barrier and explosion overpressure affecting the blast wall. We successfully achieved the optimal solution using multi-objective optimization for these two functions. We validated the optimal solution through verification simulations to ensure reliability, maintaining a margin of error of 5%. We anticipated that this method would efficiently determine the most effective installation of a blast wall while enhancing workplace safety.

Reliability Analysis on Safety Instrumented System by Using Safety Integrity Level for Fire.Explosion Prevention in the Ethyl Benzene Processes (Ethyl Benzene 공정에서 화재.폭발방지를 위하여 안전건전성수준을 이용한 안전장치시스템의 신뢰도 분석)

  • Ko, Jae-Sun;Kim, Hyo;Lee, Su-Kyoung
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this work is to analyze quantitatively if the safety instrumented system(SIS) like the pressure safety valves(PSV) in the processes of ethyl benzene plant have been designed relevantly to the safety integrity level because overpressure in the benzene or ethyl benzene columns causes the explosive reactions, fires and reactor explosions. The safety integrity level(SIL) 3 has been adopted as a target level of SIS based on the general data of the Probability of Failure on Demand of PSV, $1.00E-4{\sim}1.00E-3$. The standard model of the reliability has been set up and then the fault tree analysis of it has been carried out to get the PFD of SIS, and the results show 8.97E-04, 5.37E-04, 5.37E-04 for benzene prefractionator column, benzene column and EB column, respectively. Thus, we conclude that the SIS is designed to fulfill the condition of SIL3, and when the partial stroke test for the control valve are carried out every sixth month, the SIS of each column is expected to increase its reliability up to $22{\sim}27%$.

Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD (CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계)

  • Jang, Jungyu;Yoo, Yup;Park, Hyundo;Moon, Il;Lim, Baekgyu;Kim, Junghwan;Cho, Hyungtae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.521-531
    • /
    • 2021
  • Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).

21Century of Combat Aspects of North Korean Attack Drones Through the War of the Century (21세기 전쟁을 통해 본 북한 공격 드론의 전투 양상 전망)

  • Kang-Il Seo;Sang-Keun Cho;Jong-Hoon Kim;Ki-Won Kim;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.299-304
    • /
    • 2023
  • Recently, drones have been used as a major means of attack drones in major wars around the world, and it seems likely that they will evolve into game changers in the future. Recently, drones have been used as a major means of attack drones in major wars around the world, and it seems likely that they will evolve into game changers in the future. In the major wars of the 21century, attack drones are used for precision fire-guided or self-destruct attacks, For the purpose of cognitive warfare, its territory is expanding not only to land and air, but also to sea and water. These attack drones will perform multi-domain operations, and for this purpose, the level of autonomy will be improved and High-Low Mix We will continue to develop by strengthening concept-based scalability. North Korea has also been making considerable efforts to operate attack drones for a long time, and activities such as third-country-level self-explosive drones, artificial intelligence-based clustered self-explosive drones, and self-destructive stealth unmanned semi-submersible are expected. In addition to North Korea's provocations and attacks, it is hoped that there will be a need for active follow-up research on our military's countermeasures and utilization plans.