Purpose - This paper aims to provide a step-by-step approach to factor analytic procedures, such as principal component analysis (PCA) and exploratory factor analysis (EFA), and to offer a guideline for factor analysis. Authors have argued that the results of PCA and EFA are substantially similar. Additionally, they assert that PCA is a more appropriate technique for factor analysis because PCA produces easily interpreted results that are likely to be the basis of better decisions. For these reasons, many researchers have used PCA as a technique instead of EFA. However, these techniques are clearly different. PCA should be used for data reduction. On the other hand, EFA has been tailored to identify any underlying factor structure, a set of measured variables that cause the manifest variables to covary. Thus, it is needed for a guideline and for procedures to use in factor analysis. To date, however, these two techniques have been indiscriminately misused. Research design, data, and methodology - This research conducted a literature review. For this, we summarized the meaningful and consistent arguments and drew up guidelines and suggested procedures for rigorous EFA. Results - PCA can be used instead of common factor analysis when all measured variables have high communality. However, common factor analysis is recommended for EFA. First, researchers should evaluate the sample size and check for sampling adequacy before conducting factor analysis. If these conditions are not satisfied, then the next steps cannot be followed. Sample size must be at least 100 with communality above 0.5 and a minimum subject to item ratio of at least 5:1, with a minimum of five items in EFA. Next, Bartlett's sphericity test and the Kaiser-Mayer-Olkin (KMO) measure should be assessed for sampling adequacy. The chi-square value for Bartlett's test should be significant. In addition, a KMO of more than 0.8 is recommended. The next step is to conduct a factor analysis. The analysis is composed of three stages. The first stage determines a rotation technique. Generally, ML or PAF will suggest to researchers the best results. Selection of one of the two techniques heavily hinges on data normality. ML requires normally distributed data; on the other hand, PAF does not. The second step is associated with determining the number of factors to retain in the EFA. The best way to determine the number of factors to retain is to apply three methods including eigenvalues greater than 1.0, the scree plot test, and the variance extracted. The last step is to select one of two rotation methods: orthogonal or oblique. If the research suggests some variables that are correlated to each other, then the oblique method should be selected for factor rotation because the method assumes all factors are correlated in the research. If not, the orthogonal method is possible for factor rotation. Conclusions - Recommendations are offered for the best factor analytic practice for empirical research.
This study was performed with a view to examine the nature and difference of EFA(Exploratory Factor Analysis) and CFA(Confirmatory Factor Analysis), and to compare the analysis process and result of EFA and CFA with the same data. The result of empirical analysis was as follows. Meanwhile, p.1, p.3 was removed owing to hampering the convergent validity in EFA, p.3 was removed owing to hampering the discriminent validity in CFA. EFA was reduction process of muti measurement variables to a few factor, but CFA was understanding and confirmatory process of measurement and latent variables' relation. Eventually, this study showed that EFA and CFA used different methology, thus the different outcomes appeared although using the same data, and implicated resonable application of methology according to given data.
Kim, Mi-Ah;Kang, Taegu;Lee, Hyuk;Shin, Yuna;Kim, Kyunghyun
Journal of Korean Society on Water Environment
/
v.28
no.1
/
pp.84-93
/
2012
The study was conducted to analyze the spatio-temporal changes in water quality of the major 36 sampling stations of Nakdong River, depending on each station, season using the 17 water quality variables from 2000 to 2010. The result was verified to interpret the characteristics of water quality variables in a more accurate manners. According to the Principal component analysis (PCA) and Exploratory factor analysis (EFA) results; the results of these analyses were identified 4 factors, Factor 1 (nutrients) included the concentrations of T-N, T-P, $NO_{3}-N$, $PO_{4}-P$, DTN, DTP for sampling station and season, Factor 2 (organic pollutants) included the concentrations of BOD, COD, Chl-a, Factor 3 (microbes) included the concentrations of F.Coli, T.Coli, and Factor 4 (others) included the concentrations of pH, DO. The results of a Cluster analysis indicated that Geumhogang 6 was the most contaminated site, while tributaries and most of the down stream sites of Nakdong River were mainly affected by each nutrients (Factor 1) and organic pollutants (Factor 2). The verification consequence of Confirmatory factor analysis (CFA) from Exploratory factor analysis (EFA) result can be summarized as follows: we could find additional relations between variables besides the structure from EFA, which we obtained through the second-order final modeling adopted in CFA. Nutrients had the biggest impact on water pollution for each sampling station and season. In particular, It was analyzed that P-series pollutant should be controlled during spring and winter and N-series pollutant should be controlled during summer and fall.
Kim, Dae-Jin;Park, Min-Cheol;Lee, Kui-Haeng;Lee, Sang-Yeol;Oh, Sang-Woo
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.26
no.3
/
pp.226-235
/
2015
Objectives : The purpose of this study was to examine the factor structure of the Adolescent Personality Assessment Inventory (PAI-A) in a standardized adolescent sample using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). Methods : For this purpose, three models about factor structure of the PAI-A were explored with EFA in 490 adolescents and then were evaluated with CFA in 268 young offenders. Results : The results showed that the five factor model was considered to be most appropriate for factor structures of the PAI-A in EFA. However, none of the factor models were appropriate for the factor structures of the PAI-A in CFA. Conclusion : These findings suggest that the "five factor model" is thought to explain the PAI-A the best, but further studies are needed.
This research aimed at analyzing health behavior of private security guards applying planned behavioral theory. In order to achieve the above purpose, this research conducted purposive sampling on the security guards who live in Seoul Gyeonggi region. Excluding unfaithful response and abnormal outlier, material of 187 persons was used for analysis. As the concrete analysis method, multiple regression analysis and logistic regression analysis to presume exploratory factory analysis(EFA), Polyserial Exploratory Factor Analysis(EFA), Polyserial correlation analysis, and causal relationship between each variable. The result can be summarized as follows. First, attachment, attitude subjective standard on behavior, perceived behavioral control appeared to positively influence affirmative(+) effect on health behavior continuance will. Second, attachment had no meaningful influence attitude toward behavior. Third, attachment had affirmative(+) influence on health behavior continuance will. Fourth, perceived behavioral control had affirmative(+) influence on realization of health behavior, possibility of practising health behavior increased by about 62.9% when perceived behavioral control increased by 1 unit.
This study was conducted to evaluate a take-out food safety perception instrument that could be used by foodservice establishments. A total of 324 responses was collected via online survey, and 299 responses (92.3%) were used for the statistical analysis. Data was randomly split into two groups. Exploratory Factor Analysis (EFA) was performed on the first split-half sample (n=150) to identify a factor structure using standard principal component analysis. EFA revealed three dimensions, titled "Consumer food safety perception," "Take-out food handling," and "Elements impacting on purchase decisions." Confirmatory Factor Analysis (CFA) was performed on the remaining half sample (n=149) using Structural Equation Modeling (SEM). CFA revealed acceptable absolute model fits for three dimensions and excellent comparative model fits for the instrument. These findings propose standardized measures that can be useful in assessing the take-out food safety perception.
In this study, the performance-based evaluation factors for rock slopes have been deducted using Delphi-method. Validity of the result was verified through factor analysis. Performance of rock slope is classified as soundness, stability and durability. Through the Delphi survey, 17 factors including discontinuity orientation are deducted for soundness, 4 factors and 3 factors are selected for stability and durability, respectively. Validation is conducted using Exploratory Factor Analysis (EFA) for 24 factors, and all factors are found to be valid. As a result of Exploratory Factor Analysis (EFA), 3-types of performance were subdivided into internal soundness, external soundness, risk, damage and durability of slopes and protection (reinforcement) facilities.
Self-Compassion(SCS) Scale is developed by Neff(2003a) and translated by Kim, Lee, Cho, Chae, Lee(2008). But, there is the limitation with validation SCS and Korean version Self-Compassion(K-SCS) performed in college students and the incoherence for the results of the scale's factor analysis in other countries. Therefore, this study examined the validity of factor structure in SCS based on data in 435 adult aged from 18 to 79. For this, we conducted exploratory factor analysis(EFA) and confirmatory factor analysis(CFA), and we examined the each adequacy of two-factor, tree-factor and six-factor model. The result of EFA supported six-factor and the result of CFA was the six factor model best as well.
The Journal of Korean Association of Computer Education
/
v.9
no.3
/
pp.67-74
/
2006
The purpose of this study is identifying variables that affect to learners' preference toward specific e-learning programs, using an exploratory factor analysis(EFA) method. We extract common factors that explain the correlations among variables. In the result, 8 factors were identified as main influential factors: e-learning program design(1st factor), the purpose of e-learning use(2nd factor), social and cultural issues(3rd factor), demographics(4th factor), organizational needs(5th factor), impacts of e-learning(6th factor), e-learning management(7th factor), and technical issue(8th factor).
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.30
no.4
/
pp.168-177
/
2019
Objectives: We examined the factor structure of the Adolescent version of the General Behavior Inventory (A-GBI) for Koreans. Methods: We retrospectively reviewed the medical records of 220 adolescents (age, 12-18 years) who completed the A-GBI through the Department of Psychiatry at Asan Medical Center, Seoul, Korea, from October 2011 to December 2018. Caregivers of the study participants completed the Parent version of the GBI (P-GBI) 10-item Mania Scale. The adolescents were evaluated based on the A-GBI, Children's Depression Inventory (CDI), and Revised-Children's Manifest Anxiety Scale (RCMAS). Subsequently, an exploratory factor analysis (EFA) using the maximum likelihood method with direct oblimin rotation and correlation analyses with other scales were performed. Results: The EFA identified a two-factor structure as having the best fit: factor I included depressive symptoms and factor II included hypomanic/biphasic symptoms. Factor I was very strongly correlated with the A-GBI depressive subscale (r=0.990, p<0.001) and strongly correlated with CDI (r=0.764, p<0.001) and RCMAS (r=0.666, p<0.001). Factor II was also very strongly correlated with the A-GBI hypomanic/biphasic subscale (r=0.877, p<0.001) and weakly correlated with CDI (r=0.274, p<0.001) and RCMAS (r=0.332, p<0.001). Conclusion: The above findings support a two-dimensional model of mood symptoms in Korean youth.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.