• Title/Summary/Keyword: Exploit

Search Result 1,234, Processing Time 0.022 seconds

On-line Trace Based Automatic Parallelization of Java Programs on Multicore Platforms

  • Sun, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.2
    • /
    • pp.105-118
    • /
    • 2012
  • We propose two new approaches that automatically parallelize Java programs at runtime. These approaches, which rely on run-time trace information collected during program execution, dynamically recompile Java byte code that can be executed in parallel. One approach utilizes trace information to improve traditional loop parallelization, and the other parallelizes traces instead of loop iterations. We also describe a cost/benefit model that makes intelligent parallelization decisions, as well as a parallel execution environment to execute parallelized programs. These techniques are based on Jikes RVM. Our approach is evaluated by parallelizing sequential Java programs, and its performance is compared to that of the manually parallelized code. According to the experimental results, our approach has low overheads and achieves competitive speedups compared to the manually parallelizing code. Moreover, trace parallelization can exploit parallelism beyond loop iterations.

A study of the interference measurement analysis between 3.4125GHz band broadcasting system and UWB wireless communication system

  • Song, Hong-Jong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Ultra wideband (UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC (Direct Current) to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely an orthogonal frequency division multiplex UWB source and an impulse radio UWB source, to a broadcasting transmission system. The S/N ratio degradation of broadcasting system is presented. From these experimental results, we show that in all practical cases UWB system can be coexisted 35m distance in-band broadcasting network.

  • PDF

A Context-Awareness Modeling User Profile Construction Method for Personalized Information Retrieval System

  • Kim, Jee Hyun;Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2014
  • Effective information gathering and retrieval of the most relevant web documents on the topic of interest is difficult due to the large amount of information that exists in various formats. Current information gathering and retrieval techniques are unable to exploit semantic knowledge within documents in the "big data" environment; therefore, they cannot provide precise answers to specific questions. Existing commercial big data analytic platforms are restricted to a single data type; moreover, different big data analytic platforms are effective at processing different data types. Therefore, the development of a common big data platform that is suitable for efficiently processing various data types is needed. Furthermore, users often possess more than one intelligent device. It is therefore important to find an efficient preference profile construction approach to record the user context and personalized applications. In this way, user needs can be tailored according to the user's dynamic interests by tracking all devices owned by the user.

High Performance IP Address Lookup Using GPU

  • Kim, Junghwan;Kim, Jinsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.49-56
    • /
    • 2016
  • Increasing Internet traffic and forwarding table size need high performance IP address lookup engine which is a crucial function of routers. For finding the longest matching prefix, trie-based or its variant schemes have been widely researched in software-based IP lookup. As a software router, we enhance the IP address lookup engine using GPU which is a device widely used in high performance applications. We propose a data structure for multibit trie to exploit GPU hardware efficiently. Also, we devise a novel scheme that the root subtrie is loaded on Shared Memory which is specialized for fast access in GPU. Since the root subtrie is accessed on every IP address lookup, its fast access improves the lookup performance. By means of the performance evaluation, our implemented GPU-based lookup engine shows 17~23 times better performance than CPU-based engine. Also, the fast access technique for the root subtrie gives 10% more improvement.

Implementation and Verification of a Multi-Core Processor including Multimedia Specific Instructions (멀티미디어 전용 명령어를 내장한 멀티코어 프로세서 구현 및 검증)

  • Seo, Jun-Sang;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • In this paper, we present a multi-core processor including multimedia specific instructions to process multimedia data efficiently in the mobile environment. Multimedia specific instructions exploit subword level parallelism (SLP), while the multi-core processor exploits data level parallelism (DLP). These combined parallelisms improve the performance of multimedia processing applications. The proposed multi-core processor including multimedia specific instructions is implemented and tested using a Xilinx ISE 10.1 tool and SoCMaster3 testbed system including Vertex 4 FPGA. Experimental results using a fire detection algorithm show that multimedia specific instructions outperform baseline instructions in the same multi-core architecture in terms of performance (1.2x better), energy efficiency (1.37x better), and area efficiency (1.23x better).

A Selective Protection Scheme for Scalable Video Coding Based on Dependency Graph Model

  • Hendry, Hendry;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.78-81
    • /
    • 2010
  • In this paper, we propose an efficient and effective selective protection scheme to SVC that exploit the propagation of protection effect by protecting significant frames that can give the maximum visual quality degradation. We model SVC dependency coding structure as a directed acyclic graph which is characterized with an estimated visual quality value as the attribute at each node. The estimated visual quality is calculated by using our model based on the proportions of intra- and inter-predicted MBs, amounts of residual, and estimated visual quality of reference frames. The proposed selective protection scheme traverses the graph to find optimal protection paths that can give maximum visual quality degradation. Experimental results show that the proposed selective protection scheme reduces the required number of frames to be protected by 46.02% compared to the whole protection scheme and 27.56% compared to the layered protection scheme.

  • PDF

A Novel Definition of Spectrum Holes for Improved Spectrum Utilization Efficiency

  • Li, Xiaoqiang;Zhou, Qi;Dai, Hui;Zhang, Jie;Li, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.749-761
    • /
    • 2014
  • Improving spectrum utilization efficiency is a fundamental goal of dynamic spectrum access technology. The definition of spectrum holes determines how to detect and exploit them. Current definitions of spectrum holes are ineffective in exploiting spatial-temporal spectrum holes. In this paper, a novel definition of spectrum holes is proposed, in which throughput loss indicates the impact of secondary users on primary users. The definition specifies spectrum holes, unifies the impact of secondary users on primary users and is effective exploiting spatial-temporal spectrum holes. Theoretical analysis and numerical simulations show that the new definition proposed in this paper significantly improves the spectrum utilization efficiency.

On-Chip Multiprocessor with Simultaneous Multithreading

  • Park, Kyoung;Choi, Sung-Hoon;Chung, Yong-Wha;Hahn, Woo-Jong;Yoon, Suk-Han
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.13-24
    • /
    • 2000
  • As more transistors are integrated onto bigger die, an on-chip multiprocessor will become a promising alternative to the superscalar microprocessor that dominates today's microprocessor marketplace. This paper describes key parts of a new on-chip multiprocessor, called Raptor, which is composed of four 2-way superscalar processor cores and one graphic co-processor. To obtain performance characteristics of Raptor, a program-driven simulator and its programming environment were developed. The simulation results showed that Raptor can exploit thread level parallelism effectively and offer a promising architecture for future on-chip multi-processor designs.

  • PDF

PKG-VUL: Security Vulnerability Evaluation and Patch Framework for Package-Based Systems

  • Lee, Jong-Hyouk;Sohn, Seon-Gyoung;Chang, Beom-Hwan;Chung, Tai-Myoung
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.554-564
    • /
    • 2009
  • In information security and network management, attacks based on vulnerabilities have grown in importance. Malicious attackers break into hosts using a variety of techniques. The most common method is to exploit known vulnerabilities. Although patches have long been available for vulnerabilities, system administrators have generally been reluctant to patch their hosts immediately because they perceive the patches to be annoying and complex. To solve these problems, we propose a security vulnerability evaluation and patch framework called PKG-VUL, which evaluates the software installed on hosts to decide whether the hosts are vulnerable and then applies patches to vulnerable hosts. All these operations are accomplished by the widely used simple network management protocol (SNMP). Therefore, system administrators can easily manage their vulnerable hosts through PKG-VUL included in the SNMP-based network management systems as a module. The evaluation results demonstrate the applicability of PKG-VUL and its performance in terms of devised criteria.

Homomorphic Subspace MAC Scheme for Secure Network Coding

  • Liu, Guangjun;Wang, Xiao
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.173-176
    • /
    • 2013
  • Existing symmetric cryptography-based solutions against pollution attacks for network coding systems suffer various drawbacks, such as highly complicated key distribution and vulnerable security against collusion. This letter presents a novel homomorphic subspace message authentication code (MAC) scheme that can thwart pollution attacks in an efficient way. The basic idea is to exploit the combination of the symmetric cryptography and linear subspace properties of network coding. The proposed scheme can tolerate the compromise of up to r-1 intermediate nodes when r source keys are used. Compared to previous MAC solutions, less secret keys are needed for the source and only one secret key is distributed to each intermediate node.