
554 Jong-Hyouk Lee et al. © 2009 ETRI Journal, Volume 31, Number 5, October 2009

In information security and network management,
attacks based on vulnerabilities have grown in importance.
Malicious attackers break into hosts using a variety of
techniques. The most common method is to exploit known
vulnerabilities. Although patches have long been available
for vulnerabilities, system administrators have generally
been reluctant to patch their hosts immediately because
they perceive the patches to be annoying and complex. To
solve these problems, we propose a security vulnerability
evaluation and patch framework called PKG-VUL, which
evaluates the software installed on hosts to decide whether
the hosts are vulnerable and then applies patches to
vulnerable hosts. All these operations are accomplished by
the widely used simple network management protocol
(SNMP). Therefore, system administrators can easily
manage their vulnerable hosts through PKG-VUL
included in the SNMP-based network management
systems as a module. The evaluation results demonstrate
the applicability of PKG-VUL and its performance in
terms of devised criteria.

Keywords: Security vulnerability evaluation, patch,
PKG-VLU, PKG-MIB, Ubuntu, SNMP.

Manuscript received Oct. 3, 2008; revised Aug. 7, 2009; accepted Aug. 18, 2009.
This work was supported by the IT R&D program of MKE/IITA, Rep. of Korea [2007-

S022-02, The Development of Smart Monitoring and Tracing System against Cyber-attack in
All-IP Network].

Jong-Hyouk Lee (jhlee@imtl.skku.ac.kr) is with Internet Management Technology Lab.,
Sungkyunkwan University, Suwon, Rep. of Korea, and is now with IMARA Team, INRIA,
France.

Seon-Gyoung Sohn (sgsohn@etri.re.kr) and Beom-Hwan Chang (bchang@etri.re.kr) are
with S/W & Content Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Tai-Myoung Chung (tmchung@imtl.skku.ac.kr) is with Internet Management Technology
Lab., Sungkyunkwan University, Suwon, Rep. of Korea.

doi:10.4218/etrij.09.0108.0578

I. Introduction

Attacks based on vulnerabilities are an urgent security
problems faced by system administrators. In particular, remote
attacks which exploit one or more vulnerabilities to seize
control or break down vulnerable hosts over the Internet are
dramatically increasing. Such remote attacks do not stop at one
host. They use the host as a zombie host to find and attack
other vulnerable hosts. Accordingly, such attacks based on
vulnerabilities have a serious impact over time.

The best defense against such attacks is for system
administrators to keep the latest software on their hosts and
apply patches to their software as soon as possible to repair
vulnerabilities. However, system administrators often do not
fix vulnerabilities even though the patches are published [1],
and some of system administrators do not know how to apply
the patches for their vulnerable hosts. Moreover, system
administrators who have many hosts to manage cannot prevent
zero-day attacks [2] because they have to apply the patches to
all hosts in a short time. Therefore, an efficient and convenient
method is needed to evaluate and patch known vulnerabilities.

In this paper, we introduce a simple network management
protocol (SNMP)-based security vulnerability evaluation and
patch framework, called PKG-VUL. PKG-VUL enables
evaluation of the software installed on hosts to detect known
vulnerabilities and grade the vulnerability risk weight of hosts
based on the Common Vulnerabilities and Exposures (CVE)
[3] and information of software maintained by PKG-MIB [4].
As the result of evaluation, we determine which software is
vulnerable and which host with vulnerable software in the
network has the highest degree of vulnerability. After the
evaluation, the vulnerable software is immediately patched
with the latest corresponding software or patch code.

PKG-VUL: Security Vulnerability Evaluation and
Patch Framework for Package-Based Systems

 Jong-Hyouk Lee, Seon-Gyoung Sohn, Beom-Hwan Chang, and Tai-Myoung Chung

ETRI Journal, Volume 31, Number 5, October 2009 Jong-Hyouk Lee et al. 555

The main contributions of this paper are the following.
• The proposed PKG-VUL enables system administrators to

identify their vulnerable software installed on hosts and its
vulnerability level by a vulnerability evaluation based on the
combined relations of the vulnerable software and the
vulnerability information.

• The proposed PKG-VUL also enables system administrators
to patch vulnerable software immediately based on the
vulnerability evaluation. Thus, system administrators can
keep the latest or invulnerable software on their hosts.

• The operations for the evaluation and patching of PKG-VUL
are accomplished by SNMP. Therefore, PKG-VUL would be
easily included in SNMP-based network management
systems as a module.
The remainder of this paper is organized as follows. In

section II, we present the current problems. In section III, we
introduce our previous works to manage the information of
software. In section IV, we present the architecture of PKG-
VUL and describe how it is organized and how it works. In
section V, we evaluate the applicability of PKG-VUL and
provide the comparison results in which previously developed
defense methods are compared with PKG-VUL. Finally, we
conclude this paper in section VI.

II. Problem Statements

1. Recent Defense Methods

Recent attacks based on known vulnerabilities such as
CodeRed [5], Nimda [6], and SQL Slammer [7] have
motivated the development of more efficient and effective
defense methods. As part of an effort to develop defense
methods, Shield [8], TaintCheck [9], STEM [10], Snort [11],
and Nessus [12] have been developed. Shield, developed by
Microsoft Research, is a network-based vulnerability checking
filter. The filter, operating on the TCP/IP stack, examines the
incoming or outgoing traffic of vulnerable applications and
corrects traffic that exploits vulnerabilities. A weak point of
Shield is the generation of signatures and application of the
signatures because Shield requires manually generated
signatures derived from known vulnerabilities, and the
signatures need to be applied to the TCP/IP stack before
operation. Manual signature generation is clearly too slow to
prevent attacks which infect hundreds of thousands of systems
in a matter of hours or minutes. TaintCheck is more flexible
and responsible in comparison with Shield. TaintCheck
generates vulnerability-specific signatures from network traffic.
The generated signatures are used to label the network traffic as
tainted and to keep track of the propagation of tainted data as
the program executes. TaintCheck alerts occur when tainted

data is used to attack. STEM is a code instrumentation method.
STEM attempts to monitor the execution of potentially
vulnerable software via code instrumentation and then replaces
the vulnerable software with an automatically patched version.
Snort is widely used to monitor network traffic and detect
attacks of known vulnerabilities as a network intrusion
detection system (NIDS). However, it focuses on detection
rather than attack prevention even though Snort is usually more
customized by vulnerable software than firewalls. Nessus is a
vulnerability scanner that checks network vulnerabilities of
hosts.

Such defense methods have certain weaknesses. They
introduce substantial overhead in the TCP/IP stack or in
software execution time because they require the generation of
vulnerability-specific signatures or monitoring of the TCP/IP
stack. In particular, Shield, TaintCheck, and STEM need to
generate signatures, although the patches for vulnerabilities
have been published in public domains, such as CVE, CERT
[13], and ISS [14]. Snort also has one of the drawbacks of
NIDS, namely, a high false positive rate, which complicates the
reaction process. Nessus only provides vulnerability
information for hosts; therefore, system administrators need to
perform tasks to remove or update vulnerable entities
separately. Above all, system administrators perceive the
defense methods as inconvenient and imprecise, so it is
desirable to seek a more efficient and convenient alternative
method to achieve the same goals.

2. Impact of Known Vulnerabilities

We are here concerned with the impact of known
vulnerabilities. According to [15], more than 90% of attacks
today exploit known vulnerabilities. The question we have to
ask is why attacks exploiting known vulnerabilities make up a
great proportion of attacks and most of such attacks are
successful.

According to [16], vulnerabilities can be classified into three
types: secret, published, and patched. Published and patched
vulnerabilities are called known vulnerabilities. A secret
vulnerability has its own time s1 until it is either published or
patched. Note that a secret vulnerability may change its status
when it is published. However, it may still be a secret and may
be exploited because it has not been disclosed on public
domains, such as CVE, CERT, and ISS; therefore, many
people would be unaware of it. A published vulnerability,
which has its own time s2, is one that has been published, but
its corresponding patch is not yet available. A patched
vulnerability having its own time s3 is one that has been
published, and its corresponding patch is also available.
Suppose Ф is a software puerility, where time(0) ≤ Ф < s1.

556 Jong-Hyouk Lee et al. ETRI Journal, Volume 31, Number 5, October 2009

Fig. 1. Relation between vulnerability’s lifetime and attack.

Φ S1 S2 S3

Time(t)

N
um

be
r o

f a
tta

ck
s

time(t+n) time(p)

Table 1. Character of classified vulnerabilities.

 Secret Published Patched

Existing time s1 s2 s3

Transition time time(t) time(t+n) time(p)

Impact Low Medium High

Then, the lifetime of vulnerability is defined as Ф + s1 + s2 + s3.
The relation between the lifetime of vulnerability and attack is
depicted in Fig. 1.

In Fig. 1, time(t) is the first time of vulnerability discovery.
The vulnerability is published when someone reveals details of
the problem to the public domain at time(t + n), where n is a
secret time, and n = s1. It is clear that, in some cases, the
discoverer of a vulnerability does not disclose the problem
immediately. Thus, the duration of n is decided by the
discoverer. If n has a long duration, the vulnerability remains a
secret for a long time. In this case, the secret vulnerability
causes an unknown vulnerability attack. During the time of
published vulnerability s2, the information of vulnerability is
announced: what it is, how it can be exploited, and how to
patch the software having the vulnerability if a corresponding
patch is available. There is a contentious ongoing debate about
how software vulnerability should be made public. In s2, the
information of a published vulnerability can enable system
administrators to take precautions that prevent or reduce attacks
which exploit the published vulnerability. On the contrary, it
can provide attackers with information on valuable software as
well. The time of patched vulnerability s3 has the longest
duration in the lifetime of vulnerability since this period ends
when the corresponding vulnerable software is removed or
patched on the systems. In s3, attacks slowly decrease due to
the availability of the patch. However, a large proportion of
system administrators are not particularly cautious and do not

take adequate precautions, such as filtering ports, applying
patches, and removing vulnerable software, even a few weeks
after the patch is available [1], [15], [16]. Table 1 shows the
summarized character of classified vulnerabilities.

In this paper, we focus on the time of patched vulnerability s3
to reduce its impact. Note that we do not intend to reduce the
time of secret vulnerability s1; however, the proposed PKG-
VUL enables system administrators to take adequate
precautions for the time of published vulnerability s2. For
instance, if system administrators apply the patch to their
vulnerable software as soon as possible after the time the patch
is released time(p), the success rate of the attack is decreased,
and thereby the number of attacks is also decreased.

III. PKG-MIB

In this section, we introduce PKG-MIB1) as in our previous
work [4]. PKG-MIB was originally developed as a private-
MIB to manage the information of software installed on Linux
systems by SNMP. Note that PKG-MIB is redefined for use
with Microsoft Windows if it provides the information of
software installed on Microsoft Windows.

To fill the information related software into PKG-MIB, we
define objects that describe the behavior of the information-

Table 2. Information of softwareStats group.

Object Entry Sub-object Syntax

- - Sequence of

- Sequence

indexStats(1) CounterIndex

name(2) DisplayString

version(3) DisplayString

desc(4) DisplayString

statsTable(1)
statsEntry(1)

status(5) DisplayString

- - Sequence of

- Sequence

indexInfo(1) CounterIndex

priority(2) DisplayString

section(3) DisplayString

maintainer(4) DisplayString
source(5) DisplayString

depends(6) DisplayString

infoTable(2)
infoEntry(2)

size(7) DisplayString

1) Internet Assigned Numbers Authority (IANA) has assigned the following private

enterprise number to us: 27315.

ETRI Journal, Volume 31, Number 5, October 2009 Jong-Hyouk Lee et al. 557

related software. PKG-MIB only has a softwareStats group,
which has its own object identifier (OID): 1.3.6.1.4.1.27315.1.0.
Table 2 shows the softwareStats group. The objects of the
softwareStats group relate to software and are used by an
SNMPv2 entity acting in an SNMP agent role to describe those
object resources. The SNMP agent controls the objects of the
softwareStats group for dynamic configuration by an SNMP
manager.

Table 2 lists the objects contained in the softwareStats group
in two sub-tables. The first one is statsTable
(1.3.6.1.4.1.27315.1.0.1), which contains essential objects to
represent the information of software. Other one is infoTable
(1.3.6.1.4.1.27315.1.0.2), which contains additional objects.
These tables are read-only tables consisting of one entry for
each object resource that can be dynamically configured when
the software information is changed by installation, updating,
removal, or patching. For instance, if any software is updated
by a software management tool such as Advanced Packaging
Tool (APT) [4], [17], [18], related objects are updated. In
another example, if a system administrator is interested in the
status information of installed software, then the OID is
softwareStats.1.1.5 or 1.3.6.1.4.1.27315.1.0.1.1.5 is used to
obtain the status information by the SNMP queries.

IV. PKG-VUL Architecture

We introduce the goals and architecture of PKG-VUL in this
section. First, we present the objective and overview of PKG-
VUL, and then the two main modules are described in detail.

1. Goals and Overview

There are three main objectives of PKG-VUL: agility,
usability, and scalability.

Agility: The proposed architecture must be able to patch as
soon as possible. Agility must be designed into PKG-VUL so
that a corresponding patch for a vulnerability is applied to
vulnerable software as soon as the corresponding patch is
released to the public domains.

Usability: The proposed architecture must be easy to use.
PKG-VUL must be designed to provide ease of use for system
administrators. Since the lifetime of a vulnerability is the
longest in s3, usability must be provided to system
administrators along with agility.

Scalability: The proposed architecture must be scalable for
large scale networks. We must design PKG-VUL in such a
way that PKG-VUL becomes a scalable tool, which has low
CPU usage, low memory usage, and low traffic for
deployment in large scale networks.

PKG-VUL achieves agility by applying the well-known

Fig. 2. Network topology managed by PKG-VUL.

PKG-MIB
enabled nodesPKG-MIB

enabled nodes

System
administrator

screen
Command

center
CVE database

Patch database

really simple syndication (RSS) content delivery protocol. The
published and patched information for vulnerabilities is posted
on public domains and then the collector of PKG-VUL, which
has the function of an RSS reader, aggregates the posted
information. The aggregated information is used to evaluate
with PKG-MIB. As previously mentioned, a large proportion
of system administrators do not fix their systems even though
the systems are vulnerable and the patches are also published
on the public domains. The convenience of PKG-MIB brings
about usability and scalability. For instance, system
administrators can judge whether the managed software is
vulnerable by a few clicks because PKG-MIB is a private-MIB.
The information is delivered by an SNMP manager [4]. In
addition, PKG-MIB could be easily included in SNMP-based
network management systems as a module. Accordingly, it
achieves scalability.

Figure 2 shows the network topology managed by PKG-
VUL. In the network topology, the command center has the
function of an SNMP manager, and the managed hosts have
the function of SNMP agents, including PKG-MIB. Thus, the
command center gathers the software information from the
managed hosts using the SNMP protocol. The command
center also has the function of an RSS reader to obtain the
CVE and patch information from the public domains. In the
VUL-check module of the command center, such
information is used to evaluate which node has vulnerable
software and which node has the highest degree of
vulnerability in the managed network. After the vulnerability
evaluation, the vulnerable software is fixed by the VUL-patch
module with latest patch if the corresponding patch is
available. Figure 3 shows the procedures of vulnerability
evaluation and patching.

A. Vulnerability Evaluation

The CVE and patch information is delivered to the collector
of the command center by RSS. The collector records the
information in its data structures. The two data structures are

558 Jong-Hyouk Lee et al. ETRI Journal, Volume 31, Number 5, October 2009

Fig. 3. Procedures of vulnerability evaluation and patching.

System admin.
screen

Command
center PKG-MIB node CVE database or

USN database

VUL-check evaluation

VUL-patch evaluation

CVE and patch information
VUL-check request

PKG-MIB request
PKG-MIB response

VUL-check response

VUL-patch request
PKG-MIB request

PKG-MIB response

Binary request
Binary response

VUL-check evaluation
VUL-patch response

V
ul

ne
ra

bi
lit

y
pa

tc
h

pr
oc

ed
ur

e
V

ul
ne

ra
bi

lit
y

ev
al

ua
tio

n
pr

oc
ed

ur
e

Table 3. Two data structures of collector.

 CVE structure (published vulnerability)

Field Description

cve_name Name of CVE

cve_status Status of CVE (Entry or Candidate)

cve_desc Description of CVE

USN structure (patched vulnerability)

Field Description

usn_num Number of USN

usn_name Name of USN

vul_name Related names of vulnerabilities

cve Related names of CVEs

date Published date of USN

software Software can be used for patch

shown in Table 3. The recorded information is then used for
vulnerability evaluation. Note that the recorded information is
about the published vulnerability delivered from the website of
CVE and the patched vulnerability delivered from the website
of Ubuntu security notices (USN)2) [19]. The VUL-check
request is executed by a system administrator, and then the
function of the SNMP manager in the command center
requests the information of software installed on the host. At
this time, the VUL-check module evaluates the software based

2) We have implemented PKG-VUL on Ubuntu Linux, which has a security repository to

provide patches for patched vulnerabilities.

on the delivered information presented in Table 2 and the
recorded information presented in Table 3. The evaluation
procedure in the VUL-check module is introduced in detail in
section IV.2. Finally, the VUL-check response, including the
result of the vulnerability evaluation, is sent to the system
administrator from the command center.

B. Vulnerability Patch

The system administrator decides that the vulnerable
software needs to be patched based on the vulnerability
evaluation. The VUL-patch request including the information
of the vulnerable software is executed by the system
administrator, and then a PKG-MIB request is sent from the
command center to the host. At this time, the VUL-patch
module in the host executes the software management tool,
APT. Note that APT is a software management tools that
enables easy installation, updating, patching, and removal of
software via a remote patch (software) database [17], [18]. The
software management tool installs the corresponding patch,
and then the PKG-MIB response, including the result of the
patch, is sent to the commend center. The patch procedure in
the VUL-patch module is introduced in detail in section IV.2.
At this time, the VUL-check module again evaluates the
vulnerability of the host. Finally, the VUL-patch response is
sent to the system administrator from the command center.

Thus, the system administrator can apply the patches
corresponding to the vulnerabilities to prevent attacks that
exploit the patched vulnerabilities which have their own time,
s3, as soon as the patches are available. Moreover, the proposed
PKG-VUL enables system administrators to take adequate
precautions, such as filtering addresses and ports for a
published vulnerability whose time is s2.

2. Modules

A. VUL-Check Module

The VUL-check module has two main functions. The first
one is the detection of known vulnerabilities based on the
information of PKG-MIB, which is the information of
software installed on the host, and USN, which is the
information of patched vulnerabilities for Ubuntu Linux. The
second function is the evaluation of detected vulnerabilities.

The vulnerability detection function is shown in algorithm 1.
In algorithm 1, H.release obtained from system.sysDescr.0 is
the version of Ubuntu Linux installed on a host. The
information of the softwareStats group provided by PKG-MIB
is P. Set P = {P[1], P[2],…, P[α]}, where α is the total number
of programs installed on the host. Define P.index as the index
of software. Let P.name denote the name of software installed
on the host, and let P.version denote the version of the software.

ETRI Journal, Volume 31, Number 5, October 2009 Jong-Hyouk Lee et al. 559

Algorithm 1. Vulnerability detection
1: begin
2: input H, P, U
3: index ← 1
4: for i ← 1 to α do
5: for j ← 1 to M do
6: if P[i].name = U[j].name then
7: if H.release = U[j].release then
8: if P[i].version < U[j].version then
9: V[index] ← (P[i].index, U[j].index)
10: index ← index + 1
11: end if
12: end if
13: end if
14: end for
15: end for
16: output V
17: end

For instance, P[i].name is obtained from softwareStats.1.1.2.i.
Also, P[i].version is the version of P[i].name.

The USN structure (U) is obtained by the collector which
records U from the USN website [19]. Then it is defined as U =
{U[1], U[2],…, U[M]}, where M is the total number of entries
in U, and each U entry consists of the index of entry, U.index;
the name of the vulnerable software, U.name; the version of
the patched software, U.version, which is updated for the
vulnerability patch of U.name; and the version of Ubuntu
Linux, U.release, which indicates the version of Ubuntu Linux
having U[any] ∈ U. In this algorithm, H, P, and U are used
as inputs. The output is the list of vulnerable software
information V. Then, V is defined as V = {V[1], V[2],…, V[L]},
where L is the last index of the list. Note that V consists of two
types of binding information–the index of vulnerable software
installed on the host and the index of the software to be used to
patch the vulnerable software.

In algorithm 1, each program is examined by its name,
which is one attribute of P. Then, U is retrieved by the name of
the software which is represented by P[i].name. If there is an
entry which has same name as P[i].name, the U[j].release
indicated in U is compared with the version of Ubuntu installed
on the host H.release. When the result of this comparison is
positive, the current version of the software installed on the
host P[i].version is compared with a U[j].version which is
known to be invulnerable to the related vulnerability. The
software installed on the host is identified as vulnerable if the
version is earlier than the version of the patched software. This
process is iterated α times, which means that all of the software
installed on the node is examined. At the end of algorithm 1, V
is returned as the output. Next, we acquire the list of vulnerable
software installed on the host.

Table 4. Weights of various types of software.

Section Weight Section Weight

restricted/based 10 python 6

restricted/misc 10 perl 6

web 9 comm. 6

net 9 universe/misc 5

admin 8 translations 5

utils 8 x11 5

base 8 gnome 5

libs 8 graphics 5

misc 8 oldlibs 5

mail 7 math 4

shells 7 contrib/x11 4

otherosfs 7 editors 3

devel 7 doc 3

libdevel 7 sounds 2

interpreters 7 games 2

text 6

Priority Weight Priority Weight

required 10 optional 3

important 8 extra 2

standard 6

 Section values are obtained from softwareStats.2.1.3
 Priority values are obtained from softwareStats.2.1.2

To evaluate the vulnerabilities, we define the weights of

various types of software as shown in Table 4. The defined
weights for the section and the priority value of the software
types are also shown. Those values are obtained by PKG-MIB.
In Table 4, the section of software indicates which software is
included in which section. For instance, the Linux kernel
module is included in the restricted/base section, and iptables3)
is included the net section, so the high degree section is more
susceptible to attacks than the low degree section. The weight
for priority is similar to the weight for section. The priority of
software is assigned by the software maintainers. For instance,
“required software” is necessary for the proper functioning of a
system, whereas “optional software” includes all those types of
software that a user might reasonably want to use, such as X
window system, Latex system, and other applications.

The status of each CVE, which is determined by the CVE
Editorial Board [3], is a “Candidate” or “Entry” as indicated in
Table 3. The CVEs, whose status is “Candidate,” are not

3) iptables is generally used for stateful and stateless packet filtering and other IP packet

manipulation.

560 Jong-Hyouk Lee et al. ETRI Journal, Volume 31, Number 5, October 2009

officially recognized as vulnerabilities. To be official
vulnerabilities, “Candidate” CVEs have to poll a majority of
positive votes by the Editorial Board members. If the members
determine the CVE to be official, the status of the CVE will
become “Entry.” A “Candidate” CVE should be deleted from
the CVE list if the “Candidate” CVE is a duplicate of another
CVE, if further analysis shows that the vulnerability does not
exist, or if the CVE needs to be recast. This means that a CVE
whose status is “Candidate” can be rejected or deleted. Some
CVEs may not be vulnerabilities. For such reasons, the weight
of a “Candidate” CVE is 0.7, whereas the weight of an “Entry”
CVE is 1. Equation (1) shows the formula for calculating the
weight of a CVE used in the evaluation function:

1

_ ,i
i

weight cve w
γ

=

= ∑ (1)

where wi is the weight for each CVE, and γ is the total number
of CVEs which the vulnerable software contains. Let Risksoft be
the risk weight of vulnerable software. Equation (2) shows the
formula for calculating Risksoft.

soft (_ 0.1 1.0) _ _) ,Risk weight cve weight section weight priority= × + × ×⎢ ⎥⎣ ⎦

(2)

where weight_section and weight_priority are assigned
according to the section and priority of vulnerable software
(see Table 4). For instance, software is identified as vulnerable
by algorithm 1. This software’s section is “utils” and the
priority is “standard.” In addition, the status of two related
CVEs with vulnerable software is “Candidate.” Then, the risk
weight of vulnerable software is calculated as

54 ((0.7 0.7) 0.1 1.0) 8 6 .= + × + × ×⎢ ⎥⎣ ⎦ (3)

The main purpose of the evaluation function is to assign the
risk weight for vulnerable nodes. Suppose Risknode is the risk
weight of a vulnerable node involving vulnerable software.
Then, it is calculated as

node
1 1

0.1 1.0 _ _ ,i
j i

Risk w weight section weight priority
β γ

= =

⎢ ⎥⎛ ⎞
= × + × ×⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑

 (4)
where β is the total number of vulnerable programs which the
vulnerable node contains. In addition, the risk weight of a
managed network including vulnerable nodes Risknetwork is
calculated as

network
1 1 1

0.1 1.0 _ _ ,
h

i
k j i

Risk w weight section weight priority
β γ

= = =

⎢ ⎥⎛ ⎞
= × + × ×⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑∑ ∑

 (5)
where h is the total number of nodes in the managed network.

Algorithm 2. Vulnerability evaluation

1: begin
2: input V
3: node_risk ← 0
4: for i ← 1 to β do
5: is ← V[i].pindex
6: weight_section ← weight of P[i].section
7: weight_priority ← weight of P[i].priority
8: totalCve ← 0
9: iu ← 0
10: for all elements of V[i].uindex do
11: iu ← iu + 1
12: usn_num ← V[i].uindex[iu]
13: ic ← 0
14: numCve ← 0
15: for all elements of U[usn_num].C_name do
16: ic ← ic + 1
17: cve_name ← U[usn_num].C_name[ic]
18: if C[cve_name].status = “Entry” then
19: numCve ← numCve + 1
20: else
21: numCve ← numCve + 0.7
22: end if
23: end for
24: totalCve ← totalCve + numCve
25: end for
26: software_risk ← (totalCve 0.1 + 1.0)
 weight_section weight_priority
27: node_risk ← node_risk + software_risk
28: end for
29: η ← node_risk
30: output η
31: end

An algorithm for the vulnerability evaluation function is

shown in algorithm 2. In algorithm 2, the input is V obtained
from algorithm 1, and the output is the weight of a vulnerable
host η. Each entry of V consists of the index of vulnerable
software pindex and the index of related USN uindex, where
uindex is defined as uindex = (uindex[1], uindex[2],…,
uindex[θ]). Let θ denote the number of related USN entries.
Define P[i].section as the section information of the software
P[i], and P[i].priority is the priority of P[i]. Note that both
P[i].section and P[i].priority are easily obtained from PKG-
MIB. Also, U[i] has the information of related CVE names
C_name. Let C_name = {C_name[1], C_name[2],…,
C_name[ζ]}, where ζ is the number of names (see Table 8).
Thus, the list of CVE names is defined as U[i].C_name[j]. The
CVE structure is defined as C = {C[1], C[2],…, C[κ]}, where
κ is the total number of entries in the CVE structure, and each
CVE structure entry has its status C[i].status.

The purpose of algorithm 2 is to represent the risk of

ETRI Journal, Volume 31, Number 5, October 2009 Jong-Hyouk Lee et al. 561

vulnerable software and the total risk of the host by numerical
value. We need P[is].section, P[is].priority, and the weight of
the related CVEs to calculate the risk. The section and priority
information is indexed from PKG-MIB by V[i].pindex, which
indicates the index of the vulnerable software. The section and
priority information is converted into the numerical values
weight_section and weight_priority as shown in Table 4. To
obtain the total weight of CVEs, totalCve, we need to retrieve
all of the related CVE entries. We know the index of related
USN entries V[i].uindex. The related CVEs for each USN entry
U[usn_num].C_name is retrieved from U. For each C_name,
the status of the CVE entry C[cve_name].status is identified as
either “Candidate” or “Entry.” If the status is “Candidate,” 0.7
is added to totalCve. Otherwise, 1 is added to totalCve. With
weight_section, weight_priority, and totalCve, we can calculate
the risk of the software by (2). This calculation is iterated β
times to evaluate how vulnerable the node is. The output of
algorithm 2 is η which indicates the risk weight of the host.

B. VUL-Patch Module

The main function of VUL-patch executes APT to patch
vulnerable software detected by algorithm 1. An algorithm for
the vulnerability patching function is shown in algorithm 3,
where the input V is obtained from algorithm 1, and the output
S is the result of the patch executions. Here, S is defined as
S = {S[1], S[2],…, S[β]}.

We know which software of the host is vulnerable from V,
that is, the output of Algorithm 1. For each vulnerable program,
patching is performed by using APT. We need the name of the
vulnerable software as the parameter of APT. The name is
obtained from P and indexed by V[i].pindex. Thus, the name of
vulnerable software is represented as P[V[i].pindex].name. For
each P[V[i].pindex].name, patching is performed. The results
of each patch are stored in S. Patching is performed β times
because the number of the vulnerable programs is β.

Algorithm 3. Vulnerability patch
1: begin
2: input V
3: for i ← 1 to L do
4: usname ← P[V[i].pindex].name
5: execute APT to path usname
6: if the result of execution is OK then
7: S[i] ← success
8: else
9: s[i] ← failure
10: end if
11: end for
12: output S
13: end

V. Evaluation

1. Applicability of PKG-VUL

We created a prototype PKG-VUL framework on Ubuntu
Linux hosts which was implemented as Java applications
within Java SDK v5.0 and Tomcat. To demonstrate the
applicability of PKG-VUL, we needed to evaluate how
applicable PKG-VUL is to real-world vulnerabilities. For this
purpose, we evaluated three different versions of Ubuntu Linux.
We installed PKG-MIB and a VUL-check module on each
node which has one of the versions of Ubuntu Linux installed.
On another node which was assigned the commend center role,
we executed a VUL-check request. The results are shown in
Tables 5 and 6.

One notable result of the vulnerability evaluation of the three
versions of Ubuntu Linux shown in Table 5 is that a node
running Ubuntu Linux v6.10 is more vulnerable than a node
running Ubuntu Linux v6.06 even though Ubuntu Linux v6.10
is the latest version of Ubuntu Linux. Any security measure
should extend to keeping the latest OS secure against attacks.
That is not always helpful for defense since most attackers do
not attempt to exploit the OS itself. However, software running
on the OS may still be vulnerable. As previously mentioned,
more than 90% of attacks exploit the known vulnerabilities.

That is, the target of an attacker is generally vulnerable
software, not the OS itself. Therefore, the VUL-patch module
of PKG-VUL provides a valid method for defense against
attacks. Also note that the vulnerabilities of libnspr4 and
Firefox are detected in all Ubuntu Linux versions (see Table 6).
Note that libnspr4 is a runtime library for Firefox. It shows the
most recent trend of exploits. These days, attacks exploit web-
based software or systems; therefore, reports of web-related

Table 5. Result of vulnerability evaluation.

 Ubuntu v5.10 Ubuntu v6.06 Ubuntu v6.10

α 1,036 1,235 1,281

β 4 3 4

γ 78 32 29

δ 0 1 1

ε 2 1 1

ζ 2 1 2

η 243 138 155

 α: Number of programs installed on a host
β: Number of vulnerable programs
γ: Number of vulnerabilities
δ: Number of system vulnerabilities
ε: Number of network vulnerabilities
ζ: Number of vulnerabilities included both of sys. and net.
η: Risk weight of a node

562 Jong-Hyouk Lee et al. ETRI Journal, Volume 31, Number 5, October 2009

Table 6. Details of vulnerable software running on each Ubuntu
Linux.

Ubuntu Linux v5.10

Name Version Sec. USN Risk

libnspr4 2:1.7.12-0ubuntu2 libs USN-361-1 44

libnss3 2:1.7.12-0ubuntu2 libs USN-361-1 44
Firefox-
gnome-
support

1.0.7-0ubuntu2 web USN-354-1 66

Firefox 1.0.7-0ubuntu2 web

USN-354-1
USN-381-1
USN-398-2
USN-398-4

89

Ubuntu Linux v6.06

Name Version Sec. USN Risk
avm-fritz-
firmware 3.11+2.6.15.11-3 rest/misc USN-346-2 30

libnspr4
2:1.firefox1.5.dfsg+

1.5.0.5-0ubuntu6.06.1 libs
USN-381-1
USN-398-2

44

Firefox
1.5.dfsg+1.5.0.5 -

0ubuntu6.06.1 web
USN-351-1
USN-381-1
USN-398-2

64

Ubuntu Linux v6.10

Name Version Sec. USN Risk

libnspr4
2:1.firefox2.0+0dfsg-

0ubuntu3 libs USN-398-1 39

Linux-image 2.6.17-10.33 base USN-395-1 40

Firefox 2.0+0dfsg-0ubuntu3 web USN-398-1 44
Linux-

restricted-
modules

2.6.17.5-11 rest/misc USN-404-1 32

vulnerabilities are increasing. Finally, Ubuntu Linux v6.10 has
serious vulnerabilities related its kernel. According to CVE-
2006-6332, a remote attacker could send a specially crafted
packet and execute an arbitrary code with root privileges under
the vulnerability.

2. Qualitative Comparison

In this subsection, we provide the comparison results in
which previously developed defense methods are compared
with PKG-VUL qualitatively.

As shown in Table 7, which is based on the comparison table
in [20], Snort and Shield operate in reactive mode. As network
traffic passes through a network interface, Snort and Shield
examine the traffic. Accordingly, they have an impact on
latency and throughput. On the other hand, Nessus and PKG-
VUL operate in proactive mode so that vulnerability

Table 7. Comparison of various defense methods.

Snort [11] Shield [8] Nessus [12] PKG-VUL

1 NIDS
Vulnerability

checking filters
Vulnerability

scanner

Vulnerability
scanner and

patcher
2 Reactive Reactive Proactive Proactive

3
Typically only

examines
network level

Examines
network level

Can search for
application level

Can search for
application
level, also

provide related
software

information

4

All network
traffic is

examined:
impact latency
and throughput

All network
traffic is

examined:
impact latency
and throughput

Vulnerability
scan runs at

regular intervals:
impact on

system load
only during

scanning

Vulnerability
scan and patch
run at regular

intervals: impact
on system load
during scanning

and patching

5

Requires regular
updates and
associated

configuration

Requires regular
updates and
associated

configuration
manually

Requires regular
updates

Requires regular
updates

6 No Yes No Yes

7 No No No Yes

8 Complex Complex Simple Simple

9 High High Medium Low

 1: Classification
2: Operation mode
3: Awareness of high level function
4: Impact on normal operation on host
5: Handling of attacks
6: Ability to patch
7: Ability for integrating to SNMP based network managements
8: Complexity of setup
9: complexity of maintenance

scanning/patching is required to run at regular intervals.
Therefore, Nessus and PKG-VUL only impact the system load
during scanning/patching.

VI. Conclusion

We have presented the security vulnerability evaluation and
patch framework, called PKG-VUL, which is feasible to
implement with agility, usability, and manageable scalability.
The results of our performance evaluation demonstrated that
PKG-VUL has broad applicability to various versions of Linux.
We demonstrated how easy it is for system administrators to
automatically evaluate and patch their vulnerable software. We
believe that it is only a matter of time before attackers start
using automated vulnerability scanning tools or reported
vulnerability-specific signatures to discover vulnerable hosts.

ETRI Journal, Volume 31, Number 5, October 2009 Jong-Hyouk Lee et al. 563

Such vulnerable hosts would have vulnerable software and
could be used as zombie hosts to find other vulnerable hosts.
With this paper, we hope to raise awareness and provide a valid
method for system administrators faced with security problems
to proactively evaluate and patch their vulnerable software.

In our future work, we will concentrate on extending PKG-
MIB to Microsoft Windows, and thus enable PKG-VUL to
operate on Microsoft Windows.

References

[1] E. Rescorla, “Security Holes... Who Cares?” Proc. 12th USENIX
Security Symposium, Aug. 2003, pp. 75-90.

[2] J.R. Crandall, Z. Su, and S.F. Wu, “Intrusion Detection and
Prevention: On Deriving Unknown Vulnerabilities from Zero-
Day Polymorphic and Metamorphic Worm Exploits,” Proc. 12th
ACM Conf. Computer and Communications Security, Nov. 2005,
pp. 235-248.

[3] Website of Common Vulnerabilities and Exposures, http://cve.
mitre.org (accessed Jan. 2008)

[4] J.-H. Lee et al., “PKG-MIB: Private-mib for Package-Based Linux
Systems in a Large Scale Management Domain,” Lecture Notes in
Computer Science, vol. 4496, May 2007, pp. 833-840.

[5] CERT Advisory for Code Red Worm, http://www.cert.org/
advisories/CA-2001-19.html (accessed June 2009).

[6] CERT Advisory for Nimda Worm, http://www.cert.org/
advisories/CA-2001-26.html (accessed June 2009).

[7] CERT Advisory for MS-SQL Worm, http://www.cert.org/
advisories/CA-2003-04.html (accessed June 2009).

[8] H. J. Wang et al., “Shield: Vulnerability-Driven Network Filters
for Preventing Known Vulnerability Exploits,” Proc. ACM
SIGCOMM, Aug. 2004, pp. 193-204.

[9] J. Newsome and D. Song, “Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software,” Proc. 12th Annual Network
and Distributed System Security Symposium, Feb. 2005.

[10] S. Sidiroglou et al., “Building a Reactive Immune System for
Software Services,” Proc. USENIX Annual Technical
Conference, Apr. 2005, pp. 149-161.

[11] Snort, http://www.snort.org (accessed June 2009).
[12] Nessus, http://www.nessus.org (accessed June 2009).
[13] Website of Computer Emergency Response Team (CERT),

http://www.cert.org (accessed Jan. 2008).
[14] Website of IBM Internet Security Systems (ISS), http://www.iss.

net (accessed June 2009).
[15] W.A. Arbaugh, W.L. Fithen, and J. McHugh, “Windows of

Vulnerability: A Case Study Analysis,” IEEE Computer, vol. 33,
no. 12, Dec. 2000, pp. 52-59.

[16] A. Arora, A. Nandkumar, and R. Telang, “Does Information
Security Attack Frequency Increase with Vulnerability

Disclosure? An Empirical Analysis,” Information Systems
Frontiers, vol. 8, no. 5, Nov. 2006, pp. 350-362.

[17] G. Noronha Silva, “APT HOWTO,” http://www.debian.org/
doc/manuals/apt-howto (accessed June 2009).

[18] B. Arumugam, “Ubuntu Server Guide v6.06,” https://help.ubuntu.
com/ubuntu/serverguide/C (accessed June 2009).

[19] Website of Ubuntu security notices (USN), http://www.ubuntu.
com/usn (accessed June 2009).

[20] R. Davies, “Firewalls, Intrusion Detection Systems and
Vulnerability Assessment: A Superior Conjunction?” Network
Security, vol. 2002, no. 9, Sept. 2002, pp. 8-11.

Jong-Hyouk Lee received his BS degree in
information system engineering from Daejeon
University, Daejeon, Korea, in 2004, and his
MS degree in computer engineering from
Sungkyunkwan University, Suwon, Korea, in
2007. He is a PhD student in electrical and
computer engineering at Sungkyunkwan

University. He is currently working on the development of attack
scenarios and methods to counter the attacks in NEMO-based vehicle
environments with the IMARA Team at INRIA, France. His research
interests include mobility management, security, and performance
analysis for next-generation wireless mobile networks.

Seon-Gyoung Sohn received the BS and MS
degrees in computer science from Chonnam
National University, Gwangju, Korea, in 1999
and 2001, respectively. Since 2001, she has
been with the Information Security Research
Division at ETRI, where she is a senior member
of research staff. Her research interests are in the

areas of network security, network traffic analysis, and security
situation monitoring.

Beom-Hwan Chang received the BS, MS, and
PhD degrees in electrical and computer
engineering from Sungkyunkwan University,
Seoul, Korea, in 1997, 1999, and 2003,
respectively. Since 2003, he has been with the
Information Security Research Division at
ETRI, where he is a senior member of research

staff. His research interests are in the areas of network security, network
traffic analysis, and security situation awareness.

564 Jong-Hyouk Lee et al. ETRI Journal, Volume 31, Number 5, October 2009

Tai-Myoung Chung received his first BS
degree in electrical engineering from Yonsei
University, Korea, in 1981, and his second BS
degree in computer science from University of
Illinois, Chicago, USA, in 1984. He received
the MS degree in computer engineering from
University of Illinois in 1987 and a PhD in

computer engineering from Purdue University, W. Lafayette, USA, in
1995. He is currently a professor at Sungkyunkwan University, Suwon,
Korea. He is now vice-chair of the Working Party on Information
Security & Privacy, OECD, and a senior member of IEEE. He also
serves as a presidential committee member of the Korean e-
government, the chair of the information resource management
committee of the e-government. He is an expert member of the
Presidential Advisory Committee on Science and Technology of Korea
and is chair of the Consortium of Computer Emergency Response
Teams (CERTs). His research interests are in information security,
networks, information management, and protocols of the next-
generation networks such as active networks, grid networks, and
mobile networks.

