• Title/Summary/Keyword: Experimental setup

Search Result 603, Processing Time 0.028 seconds

Experimental and numerical investigation of composite conical shells' stability subjected to dynamic loading

  • Jalili, Sina;Zamani, Jamal;Shariyat, M.;Jalili, N.;Ajdari, M.A.B.;Jafari, M.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.555-568
    • /
    • 2014
  • In this article, stability of composite conical shells subjected to dynamic external pressure is investigated by numerical and experimental methods. In experimental tests, cross-ply glass woven fabrics were selected for manufacturing of specimens. Hand-layup method was employed for fabricating the glass-epoxy composite shells. A test-setup that includes pressure vessel and data acquisition system was designed. Also, numerical analyses are performed. In these analyses, effect of actual geometrical imperfections of experimental specimens on the numerical results is investigated. For introducing the imperfections to the numerical models, linear eigen-value buckling analyses were employed. The buckling modes are multiplied by very small numbers that are derived from measurement of actual specimens. Finally, results are compared together while a good agreement between results of imperfect numerical analyses and experimental tests is observed.

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.

Experimental Results on the Energy-bounding Approach to Robustly Stable Rate-mode Bilateral Teleoperation Systems (속도 모드 양방향 원격 제어의 안정화 에너지 제한 방법의 실험 결과)

  • Park, Sung-Jun;Seo, Chang-Hoon;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.552-557
    • /
    • 2011
  • This paper presents experimental results on the energy-bounding approach to a rate-mode bilateral teleoperation control that can guarantee the robust system stability in variable time-delayed telecommunication environments. Previously, rate-mode energy bounding approach [15] was proposed and verified with experimental results using the simulated remote slave model. In this paper, a real experimental setup using an industrial robot (Denso) as a remote slave robot composed and conducted similar experiments with previous paper. In order to guarantee stability of the Denso when contacting with high impedance wall, velocity based impedance control modified by position based is used. Experimental results show that the rate-mode energy bounding approach can guarantee stable bilateral teleoperation system in the free and contact motion with variable time delay.

Behaviour of carbon fiber reinforced polymer strengthened tubular joints

  • Prashob, P.S.;Shashikala, A P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • This paper highlights the experimental and numerical investigations performed on a tubular T-joint fabricated from circular hollow sections under axial compressive loads applied at the brace. Tests were performed on a reference joint and the joint wrapped with Carbon Fiber Reinforced Polymer (CFRP). The Nitowrap EP carbon fiber with Nitowrap 410 resin serve as a composite material is used for wrapping the T-joint. Schematic diagram of the fabricated tubular joint for the experimental test setup, along with the experimental and numerical results are presented. After performing these experiments, it has been demonstrated that the joint wrapped with CFRP has a better strength and lesser deflection than a reference joint. Finite element analysis carried out in Ansys reveals that the results were in good correlation with the experimental values.

Experimental Study of Impulsive High Current Generating Apparatus (충격전류발생장치의 실험적연구)

  • An Kyun Kim
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.73-76
    • /
    • 1975
  • In this study, a design scheme of an impulsive high current generating device is presented. The device is proved to be effective in producing rather complex type of the permanent magnet. Principally, the apparatus designed same to the ordinary potential transformer or current transformer, but, it has a certain differences that the primary winding of many turns is excited by d.c. source and the secondary winding of a few turns induce low voltage and high current at the instant when opening a switch in the primary circuit. This paper does not include magnet production process. Rather, it deals with the analytical studies of the devices, the designing procedure of the experimental setup, and some results from the experimental data are presented as a preliminary study. The experimental results are found to agree well with the theoritical analysis presented in this paper.

  • PDF

Rubber-liked Biomaterial Experimental Setup based on Nonlinear Elasticity Theory (비선형 탄성이론에 기초한 혈관류 생체재료 실험장치)

  • Kang, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.90-97
    • /
    • 2010
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. Using computer-controlled experimental system, the experiment can acquire data such as inner pressure, axial load, diameter and axial gauge length without contacting the specimen. Rubber-liked material which is similar to passive artery was selected as pseudo-biomaterial. Deformations are measured for pressure-diameter curves. The data were collected and stored online to be used in the feedback control of experimental protocols. Finally, the illustrative data obtained from the experimental system were presented and the system shows that strain invariants are controlled to understand the nonlinear elastic behavior of biomaterial which is involved with strain energy function.

Experimental studies of impact pressure on a vertical cylinder subjected to depth induced wave breaking

  • Vipin, Chakkurunnipalliyalil;Panneer Selvam, Rajamanickam;Sannasiraj Annamalaisamy, Sannasiraj
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.439-459
    • /
    • 2022
  • This paper describes experimental studies of impact pressure generated by breaking regular waves in shallow water on a vertical cylinder. Experimental work was carried out in a shallow water flume using a 1:30 - scale model of a vertical rigid circular hollow cylinder with a diameter 0.2 m. This represents a monopile for shallow water offshore wind turbines, subjected to depth induced breaking regular waves of frequencies of 0.8 Hz. The experimental setup included a 1 in 10 sloping bed followed by horizontal bed with a constant 0.8 m water depth. To determine the breaking characteristics, plunging breaking waves were generated. Free surface elevations were recorded at different locations between the wave paddle to the cylinder. Wave impact pressures on the cylinder at a number of elevations along its height were measured under breaking regular waves. The depth-induced wave breaking characteristics, impact pressures, and wave run-up during impact for various cylinder locations are presented and discussed.

Resistance to sliding in orthodontics: misconception or method error? A systematic review and a proposal of a test protocol

  • Savoldi, Fabio;Papoutsi, Aggeliki;Dianiskova, Simona;Dalessandri, Domenico;Bonetti, Stefano;Tsoi, James K.H.;Matinlinna, Jukka P.;Paganelli, Corrado
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.268-280
    • /
    • 2018
  • Resistance to sliding (RS) between the bracket, wire, and ligature has been largely debated in orthodontics. Despite the extensive number of published studies, the lack of discussion of the methods used has led to little understanding of this phenomenon. The aim of this study was to discuss variables affecting RS in orthodontics and to suggest an operative protocol. The search included $PubMed^{(c)}$, $Medline^{(c)}$, and the Cochrane $Library^{(c)}$. References of full-text articles were manually analyzed. English-language articles published between January 2007 and January 2017 that performed an in vitro analysis of RS between the bracket, wire, and ligature were included. Study methods were analyzed based on the study design, description of materials, and experimental setup, and a protocol to standardize the testing methods was proposed. From 404 articles identified from the database search and 242 records selected from published references, 101 were eligible for the qualitative analysis, and six for the quantitative synthesis. One or more experimental parameters were incompatible and a meta-analysis was not performed. Major factors regarding the study design, materials, and experimental setup were not clearly described by most studies. The normal force, that is the force perpendicular to the sliding of the wire and one of the most relevant variable in RS, was not considered by most studies. Different variables were introduced, often acting as confounding factors. A protocol was suggested to standardize testing procedures and enhance the understanding of in vitro findings.

An Experimental Study on the Energy Separation in the Geometric Setup of a Low Pressure Vortex Tube (저압용 vertex tube의 기하학적형상에 따른 에너지 분리특성에 관한 실험적 연구)

  • 오동진;류정인
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.276-282
    • /
    • 2002
  • The process of energy separation in a low Pressure vortex tube with compressed air as a work-ing medium is studied in detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in a vortex tube provide useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. Analysis of the results enabled to find the optimum length of the vortex tube, the optimum shape of the Throttle and the usefulness of the Sleeve. In this study Outer tube is used for the exhaust application. The hot gas flow is turned 180$^{\circ}$and passes the out-side of the vortex tube a second time heating it. From this geometric setup of a vortex tube He effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

A Study on Application of HWAW Method to the Non-horizontally Layered Soil Structure (HWAW 기법의 비수평 출상구조지반 적용에 대한 고찰)

  • Bang, Eun-Seok;Park, Heon-Joon;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.5-17
    • /
    • 2009
  • In HWAW method, experimental dispersion curve is obtained through time-frequency analysis, and inversion procedure is based on the forward modeling which considers full wavefield. Therefore, it enables us to use relatively short testing setup and has advantage for two dimensional subsurface imaging compared with another surface wave methods. Numerical study was performed to verify that the HWAW method can be applied to non-horizontally layerd soil structure. The experimental dispersion curves obtained from HWAW method agreed with the theoretical dispersion curves based on full wavefield. Experimental dispersion curves are mainly more affected by the region between two receivers than by the region from source to the first receiver. Fluctuation phenomena of dispersion curve can be reduced by adequate receiver spacing setup. From numerical study, it was thought that reliable Vs distribution map can be constructed by HWAW method and finally subsurface imaging was tried in the real field.