• 제목/요약/키워드: Experimental module

검색결과 1,186건 처리시간 0.027초

흐름 영각에 따른 강제공랭 모듈 주위의 열전달 특성에 관한 연구 (A Study on the Heat Transfer Characteristics Around a Surface-Mounted Air-Cooled Module for the Flow Angle-of-Attack)

  • 박상희;신대종
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1267-1275
    • /
    • 2002
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around a module cooled by forced air flow. The flow angle of attack to the module were 0$^{\circ}$and 45$^{\circ}$. In the first method, inlet air flow(1~7m/s) and input power.(3, 5, 7W) were varied after a heated module was placed on an adiabatic floor(320$\times$550$\times$1㎣). An adiabatic wall temperature was determinated to use liquid crystal film. In the second method to determinate heat transfer coefficient, inlet air flow(1~7m/s) and the heat flux of rubber heater(0.031~0.062W/$m^2$) were varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. Additional information is visualized by an oil-film method of the surface flow on the floor and the module. Plots of $T_{ad}$ and $h_{ad}$ show marked effects of flow development from the module and dispersion of thermal wake near the module. Certain key features of the data set obtained by this investigation may serve as a benchmark for thermal-design codes based on CFD.

옥상녹화가 PV모듈 발전량에 미치는 영향 고찰 (A study on the effect that the green roof has on the performance of PV module)

  • 유동철;이응직
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.113-119
    • /
    • 2012
  • This study aims to examine the effect of the combined application of green roof and PV system on the PV efficiency by measuring the temperature and performance of PV module in order to reduce the temperature on the roof using roof planting system and determine the potential of efficient increase in solar-light power generation. In the experimental methodology, either monocrystalline or polycrystalline PV module was installed in green roof or non-green roof, and then the surface temperature of PV was measured by TR-71U thermometer and again the performance, module body temperature, and conversion efficiency were measured by MP-160, TC selector MI-540, and PV selector MI-520, respectively. As a result, the average body temperature of monocrystalline module was lower by $6.5^{\circ}C$ in green roof than in non-green roof; that of polycrystalline module was lower by $8.8^{\circ}C$ in green roof than in non-green roof. In the difference of generation, the electricity generation of monocrystalline module in green roof was 46.13W, but that of polycrystalline module was 68.82 W, which indicated that the latter produced 22.69W more than the former.

모듈 단위 열화조건을 고려한 자동차용 칵핏 모듈 이음(BSR Noise)에 대한 시험적 고찰 (Experimental Study of being vehicle cockpit module BSR Noise considering the deterioration condition of the module unit)

  • 이철현;양정민;조진호;이원구;우창수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.791-795
    • /
    • 2014
  • In this paper, in order to impart the aging condition of the parts, by configuring the cycle of temperature from low temperature was performed by applying the aging conditions for vehicle cockpit module. The reason for the selected modules of the cockpit vehicle parts, because the joint occurrence typical components of the room component is a first module and ceiling cockpit module. After setting the excitation profile using the BSR exciter only that this is for the module degradation after the initial and grasp the change in the dynamic characteristics of the modules based on the before and after deterioration may be made in the module, grasp the noise generating position I measured the noise and proximity. Was also visualized on the position of the joint is generated using a sound camera to objective results occurring where the joint is selected through subjective evaluation.

  • PDF

임상사례중심 모성간호학 PBL (Problem Based Learning)-모듈개발 및 시범적용 (The Development and Implementation of PBL(Problem-Based Learning) Module in Maternity Nursing Based on Clinical Cases)

  • 이성은
    • 한국간호교육학회지
    • /
    • 제9권1호
    • /
    • pp.81-93
    • /
    • 2003
  • Purpose: The purpose of this study was to develop a PBL module in maternity nursing based on the clinical cases. A PBL module applied to maternity nursing class to test the effects on improving the learning ability of students. And it would be used for developing further PBL module even more perfectly. Method: We selected the concept of the PBL module which is based on the purpose of the contents of maternity nursing class and national test held by Korean Nursing Association. The module scenario was composed up of the cases of clinical practices and was also checked by clinical practice professionals as well as the nursing professionals in other colleges. We used this PBL module for the 20 second grade student nurses in K college for 6 weeks. Besides, we checked self-analyses on the PBL class, assessments done by students on the PBL class itself and on the academic adviser and analyzed the students' subjective statements on the PBL class . Results: The achievements of the experimental students given a PBL class, are better than those of the control group statistically. And the experimental group do their almost all learning planned actively for themselves and show their positive responses on the PBL class being helpful in practicing clinical cases. Conclusion: PBL class could be considered the method to fortify student nurses' abilities on adjusting themselves to clinical real situations through the learning planned by themselves. Afterwards it is necessary to activate PBL class in nurse education. Most of all, it is more important that nurse educators should recognize the values of this PBL class and try to apply it in reality.

  • PDF

코로나19 간호시뮬레이션 학습모듈이 간호대학생의 임상추론역량, 임상수행능력, 간호수행자신감 및 불안에 미치는 효과 (Effects of a Nursing Simulation Learning Module on Clinical Reasoning Competence, Clinical Competence, Performance Confidence, and Anxiety in COVID-19 Patient-Care for Nursing Students)

  • 김예은;강희영
    • 대한간호학회지
    • /
    • 제53권1호
    • /
    • pp.87-100
    • /
    • 2023
  • Purpose: This study aimed to develop a nursing simulation learning module for coronavirus disease 2019 (COVID-19) patient-care and examine its effects on clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient care for nursing students. Methods: A non-equivalent control group pre- and post-test design was employed. The study participants included 47 nursing students (23 in the experimental group and 24 in the control group) from G City. A simulation learning module for COVID-19 patient-care was developed based on the Jeffries simulation model. The module consisted of a briefing, simulation practice, and debriefing. The effects of the simulation module were measured using clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient-care. Data were analyzed using χ2-test, Fisher's exact test, t-test, Wilcoxon signed-rank test, and Mann-Whitney U test. Results: The levels of clinical reasoning competence, clinical competence, and performance confidence of the experimental group were significantly higher than that of the control group, and the level of anxiety was significantly low after simulation learning. Conclusion: The nursing simulation learning module for COVID-19 patient-care is more effective than the traditional method in terms of improving students' clinical reasoning competence, clinical competence, and performance confidence, and reducing their anxiety. The module is expected to be useful for educational and clinical environments as an effective teaching and learning strategy to empower nursing competency and contribute to nursing education and clinical changes.

개별환경제어(PEM)시스템의 열적 특성 및 성능개선에 관한 연구 (The Experimental Study on Thermal Characteristics of PEM(Personal Environment Module) System)

  • 조성환;장철용;태춘섭
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.439-447
    • /
    • 2000
  • The PEM(Personal Environment Module) system is an individual air conditioning system developed in order to improve thermal comfort in office buildings. In this study, thermal characteristics of a PEM system have measured experimentally and compared with UFAC(Under Floor hir Conditioning) system in the EC(Environment Chamber) constructed in KIER. Results showed that the PEM system was better than UFAC system for thermal comfort and energy conservation.

  • PDF

BiTe계 thermoelectric module을 이용한 발전기 제작과 특성 (Manufacturing of thermoelectric generator using BiTe module)

  • 우병철;김봉서;이희웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1446-1448
    • /
    • 1997
  • TEC(Thermoelectric conversion) is direct conversion method between thermal energy and electric energy. We studied on the mechanical, electrical and thermal properties of thermoelectric module and made experimental thermoelectric generator with BiTe material.

  • PDF

네트워크 기반 유도전동기 제어를 위한 고성능 LonWorks 제어모듈 개발 (Development of High Performance LonWorks Fieldbus Control Modules for Network-based Induction Motor Control)

  • 김중곤;홍원표
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.319-324
    • /
    • 2005
  • The interface between host processor and the ShortStack Micro Server may be a Serial Communication Interface(SCI). The LonWorks control module with a high performance is developed, which is composed of the 8 bit PIC Microprocessor for host processor and the smart neuron chip for the ShoretStack Micro Server. This intelligent control board is verified as proceeding the various function tests from experimental system with an boost pump and inverter driving systems. It is also confirmed that the developed control module provides stably 0-10VDC linear signal to the input signal of inverter driving system for varying the induction motor speed. Thus, the experimental results show that the fabricating intelligent board carried out very well the various functions in the wide operating ranges of boost pump system. This developed control module expect to apply to industrial fields to require the comparatively exact control and monitoring such as multi-motor driving system with inverter, variable air volume system and the boost pump water supply systems.

  • PDF

태양광조명장치용 고정밀 태양위치 검출시스템 (Sun point detector for daylight system)

  • 김선호;김병철
    • 한국기계가공학회지
    • /
    • 제9권4호
    • /
    • pp.26-31
    • /
    • 2010
  • Finding sufficient supplies of clean energy for future is one of the society's most important challenges according to technologies. Alternative renewable energy source such as solar energy can be substituted for exceeding human energy need. The main factor affect to solar performance is a collective intensity. To enhance intensity, suitable equipment is a solar tracker. The solar tracker consists of sun point detector module, mechanical mechanism module with actuator and control system module. This paper presents sun point detector for solar tracker of daylight system. To evaluate the detecting accuracy, an experimental device is implemented. In experimental results, the accuracy of development system has under 0.11%/0.5deg.

고온 작동형 전지모듈 온도분포 특성에 관한 수치해석 (Numerical Analysis on the Characteristic of Thermal Distribution for High Temperature Operating Battery Module)

  • 이중섭;이병호
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.102-108
    • /
    • 2013
  • In this study, the experiment result and numerical analysis on temperature distribution of a secondary battery module for high temperature operation type were compared. Because experimental battery has been in danger of explosions, experiment on temperature distribution was carried out using dummy batteries. Study on NAS battery module, which is secondary battery of high temperature operation type, is as follows ; Test result showed that battery's temperature is in steady state uniformly after 8 hours in each section. It is similar to experimental result for temperature distribution from the result of numerical analysis, and it takes about 8.5 hours to the $300^{\circ}C$.