• Title/Summary/Keyword: Experimental designs

Search Result 742, Processing Time 0.03 seconds

TMA-OM(Tissue Microarray Object Model)과 주요 유전체 정보 통합

  • Kim Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.30-36
    • /
    • 2006
  • Tissue microarray (TMA) is an array-based technology allowing the examination of hundreds of tissue samples on a single slide. To handle, exchange, and disseminate TMA data, we need standard representations of the methods used, of the data generated, and of the clinical and histopathological information related to TMA data analysis. This study aims to create a comprehensive data model with flexibility that supports diverse experimental designs and with expressivity and extensibility that enables an adequate and comprehensive description of new clinical and histopathological data elements. We designed a Tissue Microarray Object Model (TMA-OM). Both the Array Information and the Experimental Procedure models are created by referring to Microarray Gene Expression Object Model, Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE), and the TMA Data Exchange Specifications (TMA DES). The Clinical and Histopathological Information model is created by using CAP Cancer Protocols and National Cancer Institute Common Data Elements (NCI CDEs). MGED Ontology, UMLS and the terms extracted from CAP Cancer Protocols and NCI CDEs are used to create a controlled vocabulary for unambiguous annotation. We implemented a web-based application for TMA-OM, supporting data export in XML format conforming to the TMA DES or the DTD derived from TMA-OM. TMA-OM provides a comprehensive data model for storage, analysis and exchange of TMA data and facilitates model-level integration of other biological models.

  • PDF

Integrative Review of Nonviolent Communication Intervention Studies (비폭력대화를 이용한 의사소통 중재연구의 통합적 고찰)

  • Yang, Jeong Woon;Kim, Sungjae
    • Perspectives in Nursing Science
    • /
    • v.13 no.1
    • /
    • pp.36-47
    • /
    • 2016
  • Purpose: This study aimed to uncover the evidence for developing effective communication intervention programs by analyzing and evaluating Communication Intervention Studies using Nonviolent Communication (NVC-CI). The specific purposes were to analyze general characteristics of NVC-CI studies, intervention contents, and the effectiveness of the studies. Methods: This was an integrative review that analyzed NVC-CI studies published from 2005 to 2015 identified through searches of five Korean electronic databases. The method proposed by Whittemore and Knafl was applied. This contains four stages: problem identification, literature search, data evaluation, and data analysis. Results: Twelve studies met the inclusion criteria. Most of the experimental designs were Quasi-experimental studies. These included 9 papers (75%), one qualitative study, one mixed methodology, and one case study (8.3% respectively). Most NVC-CI studies used group intervention. In order to effectively change communication patterns, interventions needed about 10~11 sessions 1~2 times a week. Conclusion: Future research with well-designed clinical trials using NVC-CI needs to be done in the area of mental health nursing to promote communication skills.

Probabilistic shear strength models for reinforced concrete beams without shear reinforcement

  • Song, Jun-Ho;Kang, Won-Hee;Kim, Kang-Su;Jung, Sung-Moon
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.15-38
    • /
    • 2010
  • In order to predict the shear strengths of reinforced concrete beams, many deterministic models have been developed based on rules of mechanics and on experimental test results. While the constant and variable angle truss models are known to provide reliable bases and to give reasonable predictions for the shear strengths of members with shear reinforcement, in the case of members without shear reinforcement, even advanced models with complicated procedures may show lack of accuracy or lead to fairly different predictions from other similar models. For this reason, many research efforts have been made for more accurate predictions, which resulted in important recent publications. This paper develops probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on deterministic shear strength models, understanding of shear transfer mechanisms and influential parameters, and experimental test results reported in the literature. Using a Bayesian parameter estimation method, the biases of base deterministic models are identified as algebraic functions of input parameters and the errors of the developed models remaining after the bias-correction are quantified in a stochastic manner. The proposed probabilistic models predict the shear strengths with improved accuracy and help incorporate the model uncertainties into vulnerability estimations and risk-quantified designs.

Seismic performance of non-ductile detailing RC frames: An experimental investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Pita, Panapa;Haryanto, Yanuar
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2020
  • Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam-column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.

Experimental determination of the resistance of a single-axis solar tracker to torsional galloping

  • Martinez-Garcia, Eva;Marigorta, Eduardo Blanco;Gayo, Jorge Parrondo;Navarro-Manso, Antonio
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.519-528
    • /
    • 2021
  • One of the most efficient designs of solar trackers for photovoltaic panels is the single-axis tracker, which holds the panels along a torque tube that is driven by a motor at the central section. These trackers have evolved to become extremely slender structures due to mechanical optimization against static load and the need of cost reduction in a very competitive market. Owing to the corresponding decrease in mechanical resistance, some of these trackers have suffered aeroelastic instability even at moderate wind speeds, leading to catastrophic failures. In the present work, an analytical and experimental approach has been developed to study that phenomenon. The analytical study has led to identify the dimensionless parameters that govern the motion of the panel-tracker structure. Also, systematic wind tunnel experiments have been carried out on a 3D aeroelastic scale model. The tests have been successful in reproducing the aeroelastic phenomena arising in real-scale cases and have allowed the identification and a close characterization of the phenomenon. The main results have been the determination of the critical velocity for torsional galloping as a function of tilt angle and a calculation methodology for the optimal sizing of solar tracker shafts.

Experimental Study on Gas Explosion According to the Effect of Confinement and Congestion Levels (밀폐도 및 밀집도의 영향에 따른 가스폭발 실험 연구)

  • Boohyoung Bang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.56-61
    • /
    • 2023
  • The plant is an important facility as a infrastructure, and ensuring safety against possible accidents such as gas leaks and explosions must be considered in the design. However, there is little study on explosion pressure in plants for reasons such as economic feasibility, and overpressure data on this field is insufficient. In this study, an experimental design plan considering the explosion scenario that may occur in the plant was presented, and the explosion pressure was confirmed through an explosion experiment. Hydrogen-methane mixed gas was used as a combustible material, and the effect of confinement and congestion on overpressure was studied. The effect of overlapping pressure waves during deflagration and the turbulence effect by congested pipes are discussed. The results of this study can be used as input data in various safety designs.

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

Experimental Design Depicted on Hussein Chalayan' Works (Hussein Chalayan의 실험적 디자인)

  • 장애란
    • Journal of the Korean Society of Costume
    • /
    • v.52 no.5
    • /
    • pp.91-107
    • /
    • 2002
  • The purpose of this study was to investigate the experimental design by using deconstructive design and mobile design depicted on Hussein Chalayan' works. Hussein Chalayan, the Turkish-Cypriot who is based in London, says' Challenging is the best word for me'. And so word, 'radical' that has difficult connotations was chosen for this study It implies two menainigs for the word. The first thing is "extreme" - something that is drastic. And 'Applied to clothes', it can probably mean "experimental". He has iconoclastic ideas and his ramp shows are always high on concept, experimentation of art and utility. His approach to fashion derives from philosophical and intellectual theories of deconstruction and mobility, which he expresses through his designs. Deconstructionism, in fashion, rejects customary rules and breaks all conventions. It questions aesthetic norms about bodily proportions and the criteria of beauty, emphasizes the adding on, or discovery of, an irrational moment, and reveals the processes of tailoring in clothing. The shape and the construction of the garment is more important than the color. Cuts. tears, asymmetries, matching different materials are among the most evident features of the deconstructive design. And Chalayan performed the mobile design of transforming furniture into clothes. Chair covers became dresses. a coffee table became a skirt which were designed by Chalayan, with geometric and architectural references. Chalayan says he was inspired by the idea of refugees fleeing. Besides Chalayan uses clothing as an art to reinterpret and reform the human body in a continuous tour de force of body/identity conceptualism and dressmaking. He reflect the body's function in the cultural context of architecture, science, or nature - and then attempt to translate his findings into clothing.dings into clothing.

An Instructional Model for Effective Experimental Education (효과적인 실험 교육을 위한 수업 모형)

  • Yoo, Dong Sang
    • Journal of Practical Engineering Education
    • /
    • v.11 no.2
    • /
    • pp.143-150
    • /
    • 2019
  • Circuit theory is a systematic study that analyzes and designs the most basic circuits in the field of electrical and electronic engineering. Circuit theory courses are organized as major courses for one or two semesters in the second year of university, so that electrical and electronic engineering students must learn. Experimental courses are being together organized for students to enhance understanding of circuit theory and cultivate the skills and the abilities of circuit design through experiments with actual circuits. This paper is a case study on the teaching method applied in electric circuit design and experiment courses to enhance the learning effect on the experimental education that supports circuit theory. To do this, we propose a 15-week instructional model consisting of theory study, simulation, experiments, and design projects. In the proposed model, the simulation and preliminary experiment preparation process are reinforced to complement the theoretical concept and the design project is introduced to acquire practical circuit design skills as engineers. The results of five-year operation demonstrate the effectiveness of the proposed model.

Experimental Validation of Topology Design Optimization (밀도법 기반 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • From the numerical results of density-based topology design optimization, a CAD geometric model is constructed and fabricated using 3D printer to experimentally validate the optimal design. In the process of topology design optimization, we often experience checkerboard phenomenon and complicated branches, which could result in the manufacturing difficulty of the obtained optimal design. Sensitivity filtering and morphology methods are used to resolve the aforementioned issues. Identical volume fraction is used in both numerical and experimental models for precise validation. Through the experimental comparison of stiffness in various designs including the optimal design, it turns out that the optimal design has the highest stiffness and the experimental result of compliance matches very well with the numerical one.