• Title/Summary/Keyword: Experimental Design Technique

Search Result 1,038, Processing Time 0.029 seconds

다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화 (Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.77-84
    • /
    • 2021
  • This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Transient-Performance-Oriented Discrete-Time Design of Resonant Controller for Three-Phase Grid-Connected Converters

  • Song, Zhanfeng;Yu, Yun;Wang, Yaqi;Ma, Xiaohui
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.1000-1010
    • /
    • 2019
  • The use of internal-model-based linear controller, such as resonant controller, is a well-established technique for the current control of grid-connected systems. Attractive properties for resonant controllers include their two-sequence tracking ability, the simple control structure, and the reduced computational burden. However, in the case of continuous-designed resonant controller, the transient performance is inevitably degraded at a low switching frequency. Moreover, available design methods for resonant controller is not able to realize the direct design of transient performances, and the anticipated transient performance is mainly achieved through trial and error. To address these problems, the zero-order-hold (ZOH) characteristic and inherent time delay in digital control systems are considered comprehensively in the design, and a corresponding hold-equivalent discrete model of the grid-connected converter is then established. The relationship between the placement of closed-loop poles and the corresponding transient performance is comprehensively investigated to realize the direct mapping relationship between the control gain and the transient response time. For the benefit of automatic tuning and real-time adaption, analytical expressions for controller gains are derived in detail using the required transient response time and system parameters. Simulation and experimental results demonstrate the validity of the proposed method.

Creep of stainless steel under heat flux cyclic loading (500-1000℃) with different mechanical preloads in a vacuum environment using 3D-DIC

  • Su, Yong;Pan, Zhiwei;Peng, Yongpei;Huang, Shenghong;Zhang, Qingchuan
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.759-768
    • /
    • 2019
  • In nuclear fusion reactors, the key structural component (i.e., the plasma-facing component) undergoes high heat flux cyclic loading. To ensure the safety of fusion reactors, an experimental study on the temperature-induced creep of stainless steel under heat flux cyclic loading was performed in the present work. The strains were measured using a stereo digital image correlation technique (3D-DIC). The influence of the heat haze was eliminated, owing to the use of a vacuum environment. The specimen underwent heat flux cycles ($500^{\circ}C-1000^{\circ}C$) with different mechanical preloads (0 kN, 10 kN, 30 kN, and 50 kN). The results revealed that, for a relatively large preload (for example, 50 kN), a single temperature cycle can induce a residual strain of up to $15000{\mu}{\varepsilon}$.

Machine Learning Perspective Gene Optimization for Efficient Induction Machine Design

  • Selvam, Ponmurugan Panneer;Narayanan, Rengarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1202-1211
    • /
    • 2018
  • In this paper, induction machine operation efficiency and torque is improved using Machine Learning based Gene Optimization (ML-GO) Technique is introduced. Optimized Genetic Algorithm (OGA) is used to select the optimal induction machine data. In OGA, selection, crossover and mutation process is carried out to find the optimal electrical machine data for induction machine design. Initially, many number of induction machine data are given as input for OGA. Then, fitness value is calculated for all induction machine data to find whether the criterion is satisfied or not through fitness function (i.e., objective function such as starting to full load torque ratio, rotor current, power factor and maximum flux density of stator and rotor teeth). When the criterion is not satisfied, annealed selection approach in OGA is used to move the selection criteria from exploration to exploitation to attain the optimal solution (i.e., efficient machine data). After the selection process, two point crossovers is carried out to select two crossover points within a chromosomes (i.e., design variables) and then swaps two parent's chromosomes for producing two new offspring. Finally, Adaptive Levy Mutation is used in OGA to select any value in random manner and gets mutated to obtain the optimal value. This process gets iterated till finding the optimal value for induction machine design. Experimental evaluation of ML-GO technique is carried out with performance metrics such as torque, rotor current, induction machine operation efficiency and rotor power factor compared to the state-of-the-art works.

서브프레임의 진동모드를 고려한 점용접 너깃의 피로수명 최적설계 (Fatigue Life Optimization of Spot Welding Nuggets Considering Vibration Mode of Vehicle Subframe)

  • 이상범;이혁재
    • 한국음향학회지
    • /
    • 제28권7호
    • /
    • pp.646-652
    • /
    • 2009
  • 본 논문에서는 점용접 너깃의 피로수명을 고려한 차량 서브프레임의 용접간격 최적화 설계기법이 제안된다. 주파수영역 피로해석기법에 의해 점용접 너깃의 피로수명이 평가된다. 피로해석에서 사용되는 입력 데이터는 벨지안로 프로파일을 통과하는 차량동역학 해석과 차량 서브프레임 유한요소모델의 모드 주파수 해석을 통해 얻는다. 주파수 영역 피로해석으로 부터 얻은 피로수명 결과로부터 용접간격 최적화를 수행 할 설계점들이 선정된다. 점용접 너깃의 피로수명을 최대화시키는 용접간격을 얻기 위하여 4-요인, 3-수준 직교배열 실험계획법이 사용된다. 본 연구를 통하여 최적화된 서브프레임은 초기모델에 비하여 최소 피로수명을 갖는 용접 너깃의 피로수명이 약 65.8 % 증대되는 것을 알 수 있다.

효율적인 몬테 칼로 시뮬레이션을 위한 중요 샘플링 기법이 내장된 실험 틀 설계 (Importance Sampling Embedded Experimental Frame Design for Efficient Monte Carlo Simulation)

  • 서경민;송해상
    • 한국콘텐츠학회논문지
    • /
    • 제13권4호
    • /
    • pp.53-63
    • /
    • 2013
  • 본 논문은 효율적인 몬테 칼로 시뮬레이션을 위하여 중요 샘플링(Importance sampling) 기법이 내장된 실험 틀을 제안한다. 제안하는 실험 틀은 중요 샘플링 기법을 적용하기 위해 기능적으로 세분화된 중요 표본기(Importance Sampler)와 편향 보상기(Bias Compensator)라는 두 개의 하위 모델을 내장(Embedded)한다. 이러한 하위 모델은 기존의 시스템 모델과 실험 틀의 경계에 플러그인 됨으로써 기존 모델들의 수정없이 재사용할 수 있는 장점이 있다. 그리고 제안하는 실험 틀은 기능적 측면에서 중요 사건에 대하여 동일한 수준의 결과를 얻는 데 있어 기존의 몬테 칼로 시뮬레이션보다 시뮬레이션 시간을 단축시킬 수 있다. 이러한 효용성을 입증하기 위해 두 가지 실험을 수행하였는데, 실험 결과, 본 실험에 대하여 기존의 몬테칼로 시뮬레이션보다 최대 400 배 가량의 시뮬레이션 시간 측면에서 성능 향상을 확인하였다. 본 논문에서 제안하는 실험 틀은 다양한 콘텐츠 분야에 적용되어 시뮬레이션 성능을 향상시킬 수 있는 도구로 활용할 수 있을 뿐 아니라, 교육적 측면에서 다양한 사회 현상을 이해하고 해석하는 도구로도 활용이 가능하다.

작전부대의 인원편성 최적화를 위한 워게임 전투실험 방법에 대한 연구 (A Study on Warfighting Experimentation for Organizing Operational Troops)

  • 이용빈;염봉진
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.423-431
    • /
    • 2011
  • Warfighting experimentation is an important process for identifying requirements against changing military environment and for verifying proposed measures for reforming military service. The wargame simulation experiment is regarded as one of the most effective means to warfighting experimentation, and its importance is increasing than ever. On the other hand, the results of wargame experiments could be unreliable due to the uncertainty involved in the experimental procedure. To improve the reliability of the experimental results, systematic experimental procedures and analysis methods must be employed, and the design and analysis of experiments technique can be used effectively for this purpose. In this paper, AWAM, a wargame simulator, is used to optimize the organization of operational troops. The simulation model describes a warfighting situation in which the 'survival rate of our force' and the 'survival rate of the enemy force' are considered as responses, 'the numbers of weapons in the squad' as control factors, and 'the uncontrollable variables of the battlefield' as noise factors. In addition, for the purpose of effective experimentation, the product array approach in which the inner and outer orthogonal arrays are crossed is adopted. Then, the signal-to-noise-ratio for each response and the desirabilities for the means and standard deviations of responses are calculated and used to determine a compromise optimal solution. The experimental procedures and analysis methods developed in this paper can provide guidelines for designing and analyzing wargame simulation experiments for similar warfighting situations.

유압식 동력 조향장치의 소음에 대한 실험적 연구 (Experimental Study on the Hydraulic Power Steering System Noise)

  • 이병림;최영민;유충준
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.165-170
    • /
    • 2009
  • Pressure ripple, vibration and noise level are measured in each parts of the power steering system. MD(Mahalanobis Distance) is calculated by using MTS(Mahalanobis Taguchi System) with measured data, and noise sensitive components are selected. The components applied detail design parameters are made and data is measured. After that MD is calculated also. Mean value and SN ratio can be obtained from the MD. Effective noise reduction technique and dominant design parameters in hydraulic power steering system are introduced.

복선철도의 최적노선 선정을 위한 원격탐사영상의 적용실험연구 (A study on the Application Technique to Remote Sensing Image for Optimum Route Selection of the Two-Tract Line Railroad)

  • 연상호;장상규;홍일화
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.165-169
    • /
    • 2004
  • Recently remote sensing technology is applied for construction projects planning and design areas by use of high resolution satellite images according to engineering application technology in the various experimental tasks. In this study, It was applied for optimum route selection methods and basic design by comparing to present railway and new expand dual railway route on the new construction plan path of 20km at national railway lines, and then showed 3-dimensional images and fly simulation images to possibility for various application as low cost and short time compare to airplane and helicopters survey methods. As a results of its applied, It gained the results not only improvement of present methods but also real various application possibilities.

  • PDF

A LOOK FOR DESIGN FACTORS OF PACKAGES BY MULTIVARIATE ANALYSIS METHODS

  • Yamarai Yasushi;Ihara Masamori
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
    • /
    • pp.316-321
    • /
    • 1998
  • In order to detect causal relationships between latent traits of sensual impressions for a color and physical characteristics constructing it, it is a common practice first to extract latent factors by a factor analysis method and secondly to clarify the causal relationships by a regression analysis method. This paper presents a multivariate statistical technique to detect the influence of the physical characteristics to the latent factors simultaneously which treats the physical characteristics as experimental factors in a $L_{27}$ factorial design and analysis the effects of the factors to the latent trait scores by an ANOVA.

  • PDF