Browse > Article
http://dx.doi.org/10.12989/sss.2019.24.6.759

Creep of stainless steel under heat flux cyclic loading (500-1000℃) with different mechanical preloads in a vacuum environment using 3D-DIC  

Su, Yong (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China)
Pan, Zhiwei (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China)
Peng, Yongpei (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China)
Huang, Shenghong (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China)
Zhang, Qingchuan (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China)
Publication Information
Smart Structures and Systems / v.24, no.6, 2019 , pp. 759-768 More about this Journal
Abstract
In nuclear fusion reactors, the key structural component (i.e., the plasma-facing component) undergoes high heat flux cyclic loading. To ensure the safety of fusion reactors, an experimental study on the temperature-induced creep of stainless steel under heat flux cyclic loading was performed in the present work. The strains were measured using a stereo digital image correlation technique (3D-DIC). The influence of the heat haze was eliminated, owing to the use of a vacuum environment. The specimen underwent heat flux cycles ($500^{\circ}C-1000^{\circ}C$) with different mechanical preloads (0 kN, 10 kN, 30 kN, and 50 kN). The results revealed that, for a relatively large preload (for example, 50 kN), a single temperature cycle can induce a residual strain of up to $15000{\mu}{\varepsilon}$.
Keywords
digital image correlation; nuclear fusion; high temperature measurement; creep; vacuum chamber;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van Hemelrijck, D. (2016), "Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation", Smart. Struct. Syst. 17(1), 91-105. https://doi.org/10.12989/sss.2016.17.1.091.   DOI
2 Sutton, M.A., Yan, J.H., Tiwari, V., Schreier, H.W. and Orteu, J.J. (2008), "The effect of out-of-plane motion on 2D and 3D digital image correlation measurements", Opt. Lasers Eng., 46(10), 746-757. DOI: 10.1016/j.optlaseng.2008.05.005.   DOI
3 Sutton, M.A., Schreier, H.W. and Orteu, J.J. (2009), Image Correlation for Shape, Motion and Deformation Measurements:Basic Concepts, Theory and Applications, Springer Publishing Company, Incorporated. DOI: 10.1007/978-0-387-78747-3.
4 Valeri, G., Koohbor, B., Kidane, A. and Sutton, M.A. (2017). "Determining the tensile response of materials at high temperature using DIC and the Virtual Fields Method", Opt. Lasers Eng., 91, 53-61. DOI: 10.1016/j.optlaseng.2016.11.004.   DOI
5 Wang, S., Yao, X.F., Su, Y.Q. and Ma, Y.J. (2015). "High temperature image correction in DIC measurement due to thermal radiation", Meas. Sci. Technol. 26(9), 095006. DOI:10.1088/0957-0233/26/9/095006.   DOI
6 Wang, W., Xu, C.H., Jin, H., Meng, S.H., Zhang, Y.M. and Xie, H.W. (2017). "Measurement of high temperature full-field strain up to $2000^{\circ}C$ using digital image correlation", Meas. Sci. Technol., 28(3), 035007. DOI: 10.1088/1361-6501/aa56d1.   DOI
7 Wirtz, M., Linke, J., Pintsuk, G., De Temmerman, G. and Wright, G.M. (2013), "Thermal shock behaviour of tungsten after high flux H-plasma loading", J. Nucl. Mater., 443(1-3), 497-501. DOI: 10.1016/j.jnucmat.2013.08.002.   DOI
8 Wu, D.F., Lin, L.J., Ren, H.Y., Zhu, F.H. and Wang, H.T. (2019), "High-temperature deformation measurement of the heated front surface of hypersonic aircraft component at $1200^{\circ}C$ using digital image correlation", Opt. Lasers Eng. 122: 184-194. DOI: 10.1016/j.optlaseng.2019.06.006.   DOI
9 Wu, J.X., Cheng, T., Zhang, Q.C., Zhang, Y., Mao, L., Gao, J., Chen, D.P. and Wu X.P. (2013). "Research of infrared imaging at atmospheric pressure using a substrate-free focal plane array", Chin. Phys. Lett., 30(1), 010701. DOI: 10.1088/0256-307X/30/1/010701.   DOI
10 Arnoux, G., Bazylev, B., Lehnen, M., Loarte, A., Riccardo, V., Bozhenkov, S., Devaux, S., Eich, T., Fundamenski, W., Hender, T., Huber, A., Jachmich, S., Kruezi, U., Sergienko, G. and Thomsen, H. (2011). "Heat load measurements on the JET first wall during disruptions", J. Nucl. Mater. 415(1), S817-S820. DOI: 10.1016/j.jnucmat.2010.11.042.   DOI
11 Chen, X.M., Liu, Z.W. and Yang Y. (2014). "Residual stress evolution regularity in thermal barrier coatings under thermal shock loading", Theor. Appl. Mech. Lett. 4(2), 021009. DOI:10.1063/2.1402109.   DOI
12 Chen, Z.N., Shao, X.X., Xu, X.Y. and He, X.Y. (2018). "Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency", Appl. Opt. 57(4), 884-893. DOI: 10.1364/AO.57.000884.
13 Gao, Z.R., Xu, X.H., Su, Y. and Zhang, Q.C. (2016), "Experimental analysis of image noise and interpolation bias in digital image correlation", Opt. Lasers Eng., 81, 46-53. DOI:10.1016/j.optlaseng.2016.01.002.   DOI
14 Cheng, T., Zhang, Q.C., Wu, X.P., Chen, D.P and Jiao, B.B. (2008). "Uncooled infrared imaging using a substrate-free focalplane array", IEEE Electron Device Lett. 29(11), 1218-1221. DOI: 10.1109/LED.2008.2004568.   DOI
15 Cowley, S.C. (2016), "The quest for fusion power", Nat. Phys., 12, 384. DOI: 10.1038/nphys3719.   DOI
16 Gao, Y., Cheng, T., Su, Y., Xu, X.H., Zhang, Y. and Zhang, Q.C. (2015), "High-efficiency and high-accuracy digital image correlation for three-dimensional measurement", Opt. Lasers Eng., 65, 73-80. DOI: 10.1016/j.optlaseng.2014.05.013.   DOI
17 Gao, Z.R., Zhang, Q.C., Su, Y. and Wu, S.Q. (2017), "Accuracy evaluation of optical distortion calibration by digital image correlation", Opt. Lasers Eng., 98, 143-152. DOI:10.1016/j.optlaseng.2016.01.002.   DOI
18 Grant, B.M.B., Stone, H.J., Withers, P.J. and Preuss, M. (2009), "High-temperature strain field measurement using digital image correlation", J. Strain Anal. Eng. Des., 44(4), 263-271. DOI:10.1243/03093247JSA478.   DOI
19 Guo, B.Q., Wang, H.X., Xie, H.M. and Chen, P.W. (2014), "Elastic constants characterization on graphite at $500^{\circ}C$ by the virtual fields method", Theor. Appl. Mech. Lett., 4(2), 021010. DOI:10.1063/2.1402110.   DOI
20 Gupta, S., Parameswaran, V., Sutton, M.A. and Shukla, A. (2014). "Study of dynamic underwater implosion mechanics using digital image correlation", Proc. R. Soc. A-Math. Phys. Eng. Sci., 470(2172), 20140576-20140576. DOI:10.1098/rspa.2014.0576.   DOI
21 Linke, J., Akiba, M., Bolt, H., Breitbach, G., Duwe, R., Makhankov, A., Ovchinnikov, I., Rodig, M. and Wallura, E. (1997), "Performance of beryllium, carbon, and tungsten under intense thermal fluxes", J. Nucl. Mater., 241, 1210-1216. DOI:10.1016/S0022-3115(97)80222-X.   DOI
22 Hu, Y.J., Wang, Y.J., Chen, J.B. and Zhu, J.M. (2018a), "A new method of creating high-temperature speckle patterns and its application in the determination of the high-temperature mechanical properties of metals", Exp. Tech., 42(5), 523-532. DOI: 10.1007/s40799-018-0256-z.   DOI
23 Hu, Y.J., Liu, F., Zhu, W.D. and Zhu, J.M. (2018b). "Thermally coupled constitutive relations of thermoelastic materials and determination of their material constants based on digital image correlation with a laser engraved speckle pattern", Mech. Mat. 121, 10-20. DOI: 10.1016/j.mechmat.2018.02.002.   DOI
24 Knaster, J., Moeslang, A. and Muroga, T. (2016), "Materials research for fusion", Nat. Phys., 12, 424. DOI:10.1038/NPHYS3735.   DOI
25 Liu, Y., Zhang, Q.C., Su, Y., Gao, Z.R., Fang, Z. and Wu, S.Q. (2019), "The mechanism of strain influence on interpolation induced systematic errors in digital image correlation method", Opt. Lasers Eng., 121, 323-333. DOI:10.1016/j.optlaseng.2019.04.023.   DOI
26 Xiong, Z.M., Zhang, Q.C., Gao, J., Wu, X.P., Chen, D.P. and Jiao, B.B. (2007), "The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system", J. Appl. Phys., 102(11), 113524. DOI:10.1063/1.2822333.   DOI
27 Xu, X.H., Su, Y., Cai, Y.L., Cheng, T. and Zhang, Q.C. (2015). "Effects of various shape functions and subset size in local deformation measurements using DIC", Exp. Mech., 55(8), 1575-1590. DOI: 10.1007/s11340-015-0054-9.   DOI
28 Xue, Y., Su, Y., Zhang, C., Xu, X.H., Gao, Z.R., Wu, S.Q., Zhang, Q.C. and Wu, X.P. (2017), "Full-field wrist pulse signal acquisition and analysis by 3D digital image correlation", Opt. Lasers Eng., 98, 76-82. DOI: 10.1016/j.optlaseng.2017.05.018.   DOI
29 Xu, X.H., Zhang, Q.C., Su, Y., Cai, Y.L., Xue, W.W., Gao, Z.R., Xue, Y, Lv, Z.Q. and Fu, S.H. (2017a), "High-accuracy, highefficiency compensation method in two-dimensional digital image correlation", Exp. Mech., 57(6), 831-846. DOI:10.1007/s11340-017-0274-2.   DOI
30 Xu, X.H., Su, Y. and Zhang, Q.C. (2017b), "Theoretical estimation of systematic errors in local deformation measurements using digital image correlation", Opt. Lasers Eng., 88, 265-279. DOI:10.1016/j.optlaseng.2016.08.016.   DOI
31 Yan, T.H., Su, Y. and Zhang, Q.C. (2018), "Precise 3D shape measurement of three-dimensional digital image correlation for complex surfaces", Sci. China-Technol. Sci., 61(1), 68-73. DOI:10.1007/s11431-017-9125-7.   DOI
32 Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart. Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.   DOI
33 Ye, X.W., Yi, T.H., Wen, C. and Su, Y.H. (2015), "Reliabilitybased assessment of steel bridge deck using a mesh-insensitive structural stress method", Smart. Struct. Syst., 16(2), 367-382. https://doi.org/10.12989/sss.2015.16.2.367.   DOI
34 Song, Y.T., Wu, S.T., Li, J.G., Wan, B.N., Wan, Y.X., Fu, P., Ye. M.Y., Zheng, J.X., Lu, K., Gao, X.G., Liu. S.M., Liu, X.F., Lei, M.Z., Peng, X.B. and Chen, Y. (2014), "Concept design of CFETR Tokamak machine", IEEE T. Plasma Sci., 42(3), 503-509. DOI: 10.1109/TPS.2014.2299277.   DOI
35 Pan, B., Wu, D.F., Wang, Z.Y. and Xia, Y. (2011), "Hightemperature digital image correlation method for full-field deformation measurement at $1200^{\circ}C$", Meas. Sci. Technol., 22(1), 015701. DOI: 10.1088/0957-0233/22/1/015701.   DOI
36 Pan, Z., Chen, W., Jiang, Z.Y., Tang, L.Q., Liu. Y.P. and Liu, Z.J. (2016), "Performance of global look-up table strategy in digital image correlation with cubic B-spline interpolation and bicubic interpolation", Theor. Appl. Mech. Lett., 6(3), 126-130. DOI:10.1016/j.taml.2016.04.003.   DOI
37 Romanelli, F., Barabaschi, P., Borba, D., Federici, G., Horton, L., Neu, R., Stork, D. and Zohm, H (2012), "Fusion electricity: a roadmap to the realization of fusion energy".
38 Sakanashi, Y., Gungor, S., Forsey, A.N. and Bouchard, P. J (2016), "Measurement of creep deformation across welds in 316h stainless steel using digital image correlation", Exp. Mech., 57(2), 231-244. DOI: 10.1007/s11340-016-0245-z.
39 Shao, X.X., Dai, X.J. and He, X.Y. (2015), "Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation", Opt. Lasers Eng., 71, 9-19. DOI: 10.1016/j.optlaseng.2015.03.005.   DOI
40 Su, Y. (2019), "Creep of stainless steel under heat flux cyclic loading (500-$1000^{\circ}C$) using 3D-DIC", figshare [retrieved 17 Jul 2019], DOI: 10.6084/m9.figshare.8940341.v1.
41 Lv, Z.Q., Xu, X.H., Yan, T.H., Cai, Y.L., Su, Y. and Zhang, Q.C. (2018), "High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation", Opt. Lasers Eng., 100, 61-70. DOI:10.1016/j.opdaseng.2017.06.010.   DOI
42 Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.   DOI
43 Zhang, X., Su, Y., Gao, Z.R., Xu, T., Ding, X.H., Yu, Q.F. and Zhang, Q.C. (2018). "High-accuracy three-dimensional shape measurement of micro solder paste and printed circuits based on digital image correlation", Opt. Eng., 57(5), 054101. DOI:10.1117/1.OE.55.5.054101.
44 Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Force monitoring of steel cables using vision-based sensing technology:methodology and experimental verification", Smart. Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585.   DOI
45 Ye, X.W., Yi, T.H., Su, Y.H., Liu, T. and Chen, B. (2017), "Strainbased structural condition assessment of an instrumented arch bridge using FBG monitoring data", Smart. Struct. Syst., 20(2), 139-150. https://doi.org/10.12989/sss.2017.20.2.139.   DOI