Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.4.1000

Transient-Performance-Oriented Discrete-Time Design of Resonant Controller for Three-Phase Grid-Connected Converters  

Song, Zhanfeng (School of Electrical and Information Engineering, Tianjin University)
Yu, Yun (School of Electrical and Information Engineering, Tianjin University)
Wang, Yaqi (School of Electrical and Information Engineering, Tianjin University)
Ma, Xiaohui (School of Electrical and Information Engineering, Tianjin University)
Publication Information
Journal of Power Electronics / v.19, no.4, 2019 , pp. 1000-1010 More about this Journal
Abstract
The use of internal-model-based linear controller, such as resonant controller, is a well-established technique for the current control of grid-connected systems. Attractive properties for resonant controllers include their two-sequence tracking ability, the simple control structure, and the reduced computational burden. However, in the case of continuous-designed resonant controller, the transient performance is inevitably degraded at a low switching frequency. Moreover, available design methods for resonant controller is not able to realize the direct design of transient performances, and the anticipated transient performance is mainly achieved through trial and error. To address these problems, the zero-order-hold (ZOH) characteristic and inherent time delay in digital control systems are considered comprehensively in the design, and a corresponding hold-equivalent discrete model of the grid-connected converter is then established. The relationship between the placement of closed-loop poles and the corresponding transient performance is comprehensively investigated to realize the direct mapping relationship between the control gain and the transient response time. For the benefit of automatic tuning and real-time adaption, analytical expressions for controller gains are derived in detail using the required transient response time and system parameters. Simulation and experimental results demonstrate the validity of the proposed method.
Keywords
Discrete-time design; Grid-connected converters; Resonant controller; Transient performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. H. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions, Wiley, 2001.
2 J. W. He and Y. W. Li, “Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1850-1861, Apr. 2012.   DOI
3 F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1398-1409, Oct. 2006.   DOI
4 M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., Vol. 45, No. 5, pp. 691-703, Oct. 1998.
5 A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of current controllers for distributed power generation systems,” IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 654-664, Mar. 2009.   DOI
6 D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 814-822, May. 2003.   DOI
7 Y. Sato, T. Ishizuka, K. Nezu, and T. Kataoka, “A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current,” IEEE Trans. Ind. Appl., Vol. 34, No. 3, pp. 480-486, May. 1998.   DOI
8 D. N. Zmood, D. G. Holmes, and G. H. Bode, “Frequencydomain analysis of three-phase linear current regulators,” IEEE Trans. Ind. Appl., Vol. 37, No. 2, pp. 601-610, Mar. 2001.   DOI
9 D. Perez-Estevez, J. Doval-Gandoy, A. G. Yepes, and O. Lopez, “Positive- and negative-sequence current controller with direct discrete-time pole placement for grid-tied converters with LCL filter,” IEEE Trans. Power Electron., Vol. 32, No. 9, pp. 7207-7221, Sep. 2017.   DOI
10 J. B. Hu and Y. K. He, “Modeling and control of gridconnected voltage-sourced converters under generalized unbalanced operation conditions,” IEE Trans. Energy Convers., Vol. 23, No. 3, pp. 903-913, Sep. 2008.   DOI
11 H. Song and K. Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Trans. Ind. Electron., Vol. 46, No. 5, pp. 953-959, Oct. 1999.   DOI
12 X. H. Wang, D. Sun, and Z. Q. Zhu, “Resonant-based backstepping direct power control strategy for DFIG under both balanced and un-balanced grid conditions,” IEEE Trans. Ind. Appl., Vol. 53, No. 5, pp. 4821-4830, Sep. 2017.   DOI
13 J. B. Hu and Y. K. He, “Reinforced control and operation of DFIG-based wind-power-generation system under unbalanced grid voltage conditions,” IEE Trans. Energy Convers., Vol. 24, No. 4, pp. 905-915, Dec. 2009.   DOI
14 C. Peng, J. J. Sun, X. D. Song, and J. C. Fang, “Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers,” IEEE Trans. Ind. Electron., Vol. 64, No. 1, pp. 517-526, Jan. 2017.   DOI
15 X. M. Yuan, W. Merk, H. Stemmler, and J. Allmeling, “Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions,” IEEE Trans. Ind. Appl., Vol. 38, No. 2, pp. 523-532, Mar. 2002.   DOI
16 M. Castilla, J. Miret, J. Matas, L. G. de Vicuna, and J. M. Guerrero, “Control design guidelines for single-phase gridconnected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4492-4501, Nov. 2009.   DOI
17 C. L. Xia, B. N. Ji, and Y. Yan, “Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional-integral-resonant controller,” IEEE Trans. Ind. Electron., Vol. 62, No. 4, pp. 2123-2134, Apr. 2015.   DOI
18 A. Vidal, F. D. Freijedo, A. G. Yepes, P. Fernandez-Comesana, J. Malvar, O.Lopez, and J. Doval-Gandoy, “Assessment and optimization of the transient response of proportional-resonant current controllers for dis-tributed power generation systems,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1367-1383, Apr. 2013.   DOI
19 D. Perez-Estevez, J. Doval-Gandoy, A. G. Yepes, O. Lopez, and F.Baneira, “Enhanced resonant current controller for grid-connected converters with LCL filter,” IEEE Trans. Power Electron., Vol. 33, No. 5, pp. 3765-3778, May. 2017.   DOI
20 C. A. Busada, S. G. Jorge, and J. A. Solsona, “Resonant current controller with enhanced transient response for grid-tied inverters,” IEEE Trans. Ind. Electron., Vol. 65, No. 4, pp. 2935-2944, Apr. 2018.   DOI
21 G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, Menlo Park, CA, USA: Addison-Wesley, 1997.
22 A. Kuperman, “Proportional-resonant current controllers design based on desired transient performance,” IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5341-5345, Oct. 2015.   DOI
23 D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong, “Optimized design of stationary frame three phase ac current regulators,” IEEE Trans. Power Electron., Vol. 24, No. 11, pp. 2417-2426, Nov. 2009.   DOI
24 G. Q. Shen, X. C. Zhu, J. Zhang, and D. H. Xu, “A new feedback method for PR current control of LCL-filterbased grid-connected inverter,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2033-2041, Jun. 2010.   DOI
25 A. G. Yepes, F. D. Freijedo, O. Lopez, and J. Doval-Gandoy, “Analysis and design of resonant current controllers for voltage-source converters by means of nyquist diagrams and sensitivity function,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5231-5250, Nov. 2011.   DOI
26 S. D'Arco, J. A. Suul, and O. B. Fosso, "Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities," IEEE Trans. Ind. Appl., Vol. 51, No. 2, pp. 1743-1753, Mar. 2015.   DOI
27 J. Kukkola, M. Hinkkanen, and K. Zenger, “Observer-based state-space current controller for a grid converter equipped with an LCL filter: Analytical method for direct discretetime design,” IEEE Trans. Ind. Appl., Vol. 51, No. 5, pp. 4079-4090, Sep. 2015.   DOI
28 Z. W. Li, C. Z. Zang, P. Zeng, H. B. Yu, S. H. Li, and B. Jing, “Control of a grid-forming inverter based on sliding mode and mixed H2=H1 control,” IEEE Trans. Ind. Electron., Vol. 64, No. 5, pp. 3862-3872, May. 2017.   DOI
29 Z. W. Li, C. Z. Zang, P. Zeng, H. B. Yu, and S. H. Li, “Fully distributed hierarchical control of parallel gridsupporting inverters in islanded AC microgrids,” IEEE Trans. Ind. Informat., Vol. 14, No. 2, pp. 679-690, Feb. 2018.   DOI
30 W. L. Chen and J. S. Lin, “One-dimensional optimization for proportional-resonant controller design against the change in source impedance and solar irradiation in PV systems,” IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1845-1854, Apr. 2014.   DOI
31 D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong, “Optimized design of stationary frame three phase AC current regulators,” IEEE Trans. Power Electron., Vol. 24, No. 11, pp. 2417-2426, Nov. 2009.   DOI
32 R. N. Beres, X. F. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A review of passive power filters for three-phase grid-connected voltage-source converters,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 4, No. 1, pp. 54-69, Mar. 2016.   DOI
33 B. K. Bose, “Global energy scenario and impact of power electronics in 21st century,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2638-2651, Jul. 2013.   DOI
34 F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1184-1194, Sep. 2004.   DOI
35 J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1002-1016, Jun. 2006.   DOI
36 M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier,” IEEE Trans. Ind. Appl., Vol. 41, No. 5, pp. 1281-1291, Sep. 2005.   DOI
37 Y. W. Li, “Control and resonance damping of voltagesource and current-source converters with LC filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1511-1521, May. 2009.   DOI