• Title/Summary/Keyword: Expected loading

Search Result 429, Processing Time 0.028 seconds

Robust Design of Composite Structure under Combined Loading of Bending and Torsion (굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계)

  • Yun, Ji-Yong;O, Gwang-Hwan;Nam, Hyeon-Uk;Han, Gyeong-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

Planning A Customer Transportation System Operation using Simulation (시뮬레이션을 이용한 고객 수송 시스템 운영 방안 수립)

  • Lee, Y.J.;Kong, M.C.;Yoon, S.Y.;Jeon, T.B.
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.5-11
    • /
    • 2017
  • The purpose of this research is to propose an efficient loop line operation plan for customer transportation in a new theme park. Based on the expected customer arrivals, customer loading/unloading methods, and scheduled/non-scheduled departure schemes, movement time between stations etc., we have performed indepth analyses and derived the best optimal policy. Our results show that, over all, the operation with separate loading/unloading doors and scheduled departure is preferred to the other options. We then derived the optimal number of trains and cars meeting minimal customer unsatisfaction with low cost for each season.

An Experimental Studies on the Fatigue Behavior of Preflex Girder (프리플렉스형의 피로거동에 관한 실험적 고찰)

  • CHANG, Dong Il;Lee, Myeong Gu;LEE, Seung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.107-116
    • /
    • 1996
  • The studies are conducted to investigate the fatigue and fracture, behavior of preflex girder. In this work, the fatigue tests using by constant amplitude fatigue loading and 4-point-loading to maintain pure bending condition in the mid-span of preflex girder will be performed. It is expected from the results of the studies to provide the fatigue strength and the S-N curve of preflex girders. In addition, it will be ensured that fracture initiation occurs in the welded part of horseshoe-type shear connector as well as in other welded joints.

  • PDF

The Fatigue Behavior and Life Analysis of Carbornitrizing SCM415 Steel under Two Level Block Loading (이단응력에서 침탄질화처리재의 피로거동 및 수명 해석)

  • 송삼홍;이상훈;심원형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.903-907
    • /
    • 1996
  • Under two level block loading, the carbornitrizing specimen can be expected to show different behavior from other uniform material because the properties of surface layer and inner material are different from each other. In this research, the modified Marco-Starkey cumulative theory, which considers load interaction effect, can predict the life of SCM415 carbornitrizing and original notched and smooth specimen, In the low-high test of carbornitrizing specimen which has long life, however, we may additionally consider the increase of life by means of the stress hardening of inner original material.

  • PDF

A Study on the Methodology for Determining Dynamic Loadings of Automotive Suspension System Using Measurement and Modeling

  • 김호용;이재곤;박용국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.262-271
    • /
    • 1999
  • To design suspension system and estimate its durability , the loading history of each suspension part exposed to various operation conditions should be known from either measurement or computations. Based on these results, stress analysis is carried out to obtain the optimal shape and to reduce the production cost through the proper selection of manufacturing process. In this paper, first the measurement of 3-directional accelerations of wheel center using an accelerometer are undertaken from a vehicle running on Belgian road. Then the data measured from experiments are pre-processed with filtering . Based on the pre-processed data the methodology for determining the dynamic loading to each suspension part is developed by simply modeling the suspension system with ADAMS software. Eventually , it is expected that dynamic loadings can be used for the dynamic stress and fatigue analyses.

  • PDF

Fatigue Behavior of Composite Beams with Pyramidal Shear Connector (입체트러스형 전단연결재를 갖는 합성판의 피로거동)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.211-216
    • /
    • 2002
  • A steel plate-concrete composite slab with pyramidal shear connectors, named TSC composite slab, is expected to have sufficient bending strength and flexural rigidity for loads during and after construction. Fatigue problems play an important role in designing composite slab as bridge decks under traffic conditions. In this paper, a series of fatigue tests was carried out on TSC beam specimens under various loading conditions, in order to evaluate the fatigue strength of TSC composite slabs. The results are as follows : (1) the fatigue failure of TSC composite beams results from the tensile fracture of bottom steel plate and shear connector, and (2) fatigue strength of the steel plate for two million cycles can be estimated to be $1144kgf/cm^2$ from the S-N curves.

Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain (고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석)

  • 송하철;류현수;장창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

Application of Scale Effect in Estimating Bearing Capacity and Settlement of Footing from Plate-Load Test (평판재하시험으로부터 실제기초의 지지력 및 침하량 산정시 Scale Effect)

  • 정형식;김도열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.350-357
    • /
    • 2002
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were peformed with four different sizes of square plate, which is B=10, 15, 20 and 25cm respectively, on five different kinds of subsoil, which is pure sand(100:0), sand-clay mixed soil(75:25, 50:50, 25:75), and pure clay(0:100). Based on the analyzed results, this paper also proposed a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Applying the formular proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

  • PDF

An Overview on Performamce Control and Efficient Design of Lateral Resisting Moment Frames

  • Grigorian, Mark;Grigorian, Carl E.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.141-152
    • /
    • 2013
  • This paper presents a brief overview of the recently developed performance-control method of moment frame design subjected to monotonously increasing lateral loading. The final product of any elastic-plastic analysis is a nonlinear loaddisplacement diagram associated with a progressive failure mechanism, which may or may not be as desirable as expected. Analytically derived failure mechanisms may include such undesirable features as soft story failure, partial failure modes, overcollapse, etc. The problem is compounded if any kind of performance control, e.g., drift optimization, material savings or integrity assessment is also involved. However, there is no reason why the process can not be reversed by first selecting a desirable collapse mechanism, then working backwards to select members that would lead to the desired outcome. This article provides an overview of the newly developed Performance control methodology of design for lateral resisting frameworks with a view towards integrity control and prevention of premature failure due to propagation of plasticity and progressive P-delta effects.

Measurement of In-plane Gas Permeability of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells under Compressive Strain (고분자 전해질 연료전지 가스확산층의 압축상태 평면 기체투과율 측정)

  • Oh, Changjun;Lee, Yongtaek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.367-372
    • /
    • 2016
  • Gas diffusion layer (GDL) of PEMFCs plays a role that it diffuses the reactant gases to the catalyst layer on the membrane and discharge water from the catalyst layer to the channel. Physical parameters related to the mass transport of GDL are mostly from the uncompressed GDLs while actual GDLs in the assembled stacks are compressed. In this study, the relation of compression and strain of GDLs with various Polytetrafluoroethylene (PTFE) loading is measured experimentally and In-plane gas permeability is measured at the condition that the GDLs are in compressive strain. The gas permeability decreased with the loading of PTFE and the presentation of gas permeability under compressive stain is expected to improve the accuracy of modeling work of mass transport in the GDL.