• Title/Summary/Keyword: Expansion valve

Search Result 243, Processing Time 0.02 seconds

The Effects of Pulsating Flow on Volumetric Efficiency in the Intake and Exhaust System in a Turbocharged Diesel Engine (흡.배기 시스템의 맥동류가 과급디젤기관의 체적효율에 미치는 영향)

  • Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2009
  • This paper deals with the effects of pulsating flow on volumetric efficiency, which may be generated during the gas exchange procedure, due to piston motion, valve event on intake and exhaust stroke and unsteady flow of turbocharger of a three-cylinder four stroke turbo-charged diesel engine. Consequently, volumetric efficiency affects significantly the engine performance; torque characteristics, fuel economy and further to emission and noise level. As the expansion ratio became larger the engine speed varies and torque increases, the pressure pulsation in an exhaust gas pipe acts as an increasing factor of intake air charging capacity totally. The phase and amplitude of pressure pulsation in the intake system only affects volumetric efficiency favorably, if it is well matched and tuned effectively to the engine. Thus, to verify the exact phase and amplitude of the pressure variation is the ultimate solution for the air-flow ratio assessment in the intake stroke. Some experimental results of pressure diagrams in the intake pipe and gas-flow of turbine in-outlet are presented, under various kinds of operating condition.

  • PDF

Design of Optimized Multi-Fuzzy Controllers by Hierarchical Fair Competition-based Genetic Algorithms for Air-Conditioning System (에어컨시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적화된 다중 퍼지제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2007
  • In this paper, we propose an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of air conditioning system with multi-evaporators. Air conditioning system with multi-evaporators is composed of compressor, condenser, several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as a kinds of controller types such as a simplified fuzzy inference type. Here the scaling factors of each fuzzy controller are efficiently adjusted by Hierarchical Fair Competition-based Genetic Algorithms. The values of performance index of the simulation results of the A company type compare with simulation results of simplified inference type.

A Ballooning Phenomenon of Torque Converter Torus Size for Automatic Transmissions (자동변속기용 토크컨버터 토러스 사이즈에 따른 팽창 현상)

  • Jang, Jaeduk;Lee, Woongcheol;Sung, Dukhwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.702-708
    • /
    • 2016
  • The torque converter is deformed according to the rotating speed and control pressure when engine power is transferred to the transmission. This deformation, which is called ballooning phenomenon, occurs mainly at the outer side by the centrifugal force of the automatic transmission fluid (ATF) and the control pressure from the valve body. Although the torque converter is slightly deformed when rotating, the ballooning phenomenon affects fluid performance, efficiency and durability. Thus, expansion characteristics analysis is important in determining torus size, control pressure and structure. In this paper, an analysis equation and FEM model was developed to investigate the expansion characteristics. Using this model, structural analysis was performed to investigate the relationships between deformation and the torus diameter. The results were confirmed by comparing with the test results.

An Experimental Study on the Optimal Intermediate Pressure of a 2-Stage Compression Heat Pump Using River Water (하천수 열원 2단압축 열펌프의 최적 중간압에 관한 실험적 연구)

  • Park, Cha-Sik;Jung, Tae-Hun;Joo, Young-Ju;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.333-339
    • /
    • 2009
  • The objective of this study is to predict optimal intermediate pressure of a 2-stage compression heat pump system using river water. To determine the maximum performance of the 2-stage compression heat pump system, the experimental evaluations on the 2-stage compression cycle were carried out under various operating conditions. Electronic expansion valves were applied to control intermediate pressure and superheat. Based on the experimental data, an empirical correlation for predicting optimal intermediate pressure which considering cycle operating parameters was developed. The present correlation was verified by comparing the predicted data with the measured data. The predictions showed a good agreement with the measured data within a relative deviation of ${\pm}4%$ at various operating conditions.

A Study on High Efficiency Geothermal Heat Pump System by Improving Flow of Heat Exchanger (열교환기의 흐름개선을 통한 고효율 지열 히트펌프 시스템에 관한 연구)

  • Ahn, Sung-Hwan;Choi, Jae-Sang;Kim, Sang-Bum;Ahn, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.42-46
    • /
    • 2017
  • As $CO_2$ emission with imprudent using fossil fuel, annual mean temperature of earth is increased in every year. Geothermal energy is inexhaustible energy resource to solve this problem. Heat pump performance and heat exchange efficiency of ground loop are important to distribute widely. Thus, this study are performed to increase heat pump performance and heat exchange efficiency of ground loop with dual expansion valves and spacer. As a results, COP of cooling & heating is obtained improvement up to 11.4% using dual expansion valves, and heat exchange efficiency is increased up to 17.5% using spacer. It will be reduced initial installation cost due to increasing heat pump performance and heat exchange efficiency of ground loop.

An Optimization Study on the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정 최적화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1473-1478
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream is partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream is furtherly cooled and partially condensed through a turbo-expander and the power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream is being cooled by Joule-Thomson expansion valve and is fed to the middle section of the demethanizer. Ethane recovery percent for feed natural gas was set to 75% and methane to ethane molar ratio was fixed as 0.015. Propane refrigeration heat duty was reduced by splitting the feed stream and to exchange heat with side reboiler.

Performance Analysis of a Multi-type Inverter Heat Pump (멀티형 인버터 열펌프의 냉방성능해석에 관한 연구)

  • Kim, Y. C.;Park, G. W.;Youn, Y.;Min, M. K.;Choi, Y, D,
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.153-159
    • /
    • 2001
  • A system simulation program was developed for a multi-type inverter heat pump. Electronic expansion valve(EEV) was used to extend the capacity modulating range of the heat pump as expansion device. The program was also developed to calculate actual system performance with the building load variation with climate during a year. The performance variation of a multi-type hat pump with two EEV and an inverter compressor was simulated with compressor speed, capacity, and flow area of the EEV. As a result, the optimum operating frequency of the compressor and openings of the expansion device were decided at a given load. As compressor speed increased, he capacity of heat pump increased, the capacity of heat pump increased. Therefore flow area of EEV should be adjusted to have wide openness. Thus the coefficient of performance(COP) of the heat pump decreased due to increasement of compressor power input. The maximum COP point at a given load was decided according to the compressor speed. And under the given specific compressor speed and the load, the optimum openings point of EEV was also decided. Although the total load of indoor units was constant, the operating frequency increased as the fraction of load in a room increased. Finally ad the compressor power input increased, the coefficient of performance decreased.

  • PDF

Exergy analysis on the power recovery of LNG supply system (냉열 에너지의 동력 회수에 대한 엑서지 해석 방법에 관한 연구)

  • Park, Il-Hwan;Kim, Choon-Seong
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • The expansion work that is wasted through the irreversible expansion through the PC valve of decompression process of the natural gas governor station can be recovered by replacing the process by an isentropic expansion. The energy and exergy analyses for the two decompression process models of power producing and current decompression process model are presented. Analysis results showed that the exergy by gas supply is 56.29%, the exergy by producing power is 32.12 % in case of preheating system and 22.52% in case of non-preheating system. The dead exergy at the PCV is generated much more network. As these results, the usefulness of exergy analysis is verified.

  • PDF

A Study on the Minimization of the Refrigeration Power Consumptions Through the Determination of Demethanizer Top Pressure in the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정에서 최적의 탈메탄탑의 운전압력 결정을 통한 냉동 소요동력 최소화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1032-1037
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream was partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream was cooled further and partially condensed through a turbo-expander. The power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream was cooled by Joule-Thomson expansion valve and was fed to the middle section of the demethanizer. Recovery percent of ethane for feed natural was set to 80% and methane to ethane molar ratio was fixed as 0.0119. On the other hand, some of the cold heat could be recovered by splitting the feed stream and by exchanging heat with side reboiler in order to reduce the heat duty in the propane refrigeration cycle.

Large Displacement Polymer Bimorph Actuator for Out-of-Plane Motion

  • Jeung Won-Kyu;Choi Seog-Moon;Kim Yong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.263-267
    • /
    • 2006
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene (PVDF-TrFE). The large difference of coefficient of thermal expansion (CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a significant deflection with relatively small temperature rise. Compared to the most conventional micro actuators based on MEMS (micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. Additionally, we can achieve response time of 14.6 ms, resonance frequency of 12 Hz, and reliability ability of $10^5$ cycles. The proposed actuator can find applications where a large vertical displacement is needed while maintaining compact overall device size, such as a micro zooming lens, micro mirror, micro valve and optical application.