• Title/Summary/Keyword: Expansion efficiency

Search Result 862, Processing Time 0.028 seconds

Effectiveness of low-level laser therapy in facilitating maxillary expansion using bone-borne hyrax expander: A randomized clinical trial

  • Abdelwassie, Sara Hassan;Kaddah, Mohammed Amgad;El-Dakroury, Amr Emad;El-Boghdady, Dalia;Abd El-Ghafour, Mohamed;Seifeldin, Nouran Fouad
    • The korean journal of orthodontics
    • /
    • v.52 no.6
    • /
    • pp.399-411
    • /
    • 2022
  • Objective: The objective of this randomized clinical trial was to study the skeletal and dental effects of low-level laser therapy (LLLT) along with a miniscrew-assisted expander (Hyrax) after six months of retention. Methods: After sequence generation, concealed allocation, and implementation, 24 female patients were randomly divided (1:1) into two-groups: bone-borne rapid palatal expansion (BBE) without LLLT (n = 12) and BBE with LLLT (n = 12). Eligibility criteria included female patients aged 10-13 years old with bilateral posterior crossbites. Intraoral and extraoral photographs, cone-beam computed tomography images, and digital study models were obtained before expansion and six months after retention. The 7 mm Hyrax appliance was anchored to four palatal mini-screws, which were activated twice daily for 15 days, then locked and kept in place as a retainer. LLLT was performed in the laser group during expansion and retention, according to the guidelines provided. Results: The records of 24 patients were analyzed. According to the post-retention measurements, both groups showed a significant increase in nasal and maxillary widths and total facial height. In the laser group, the Sella-Nasion-Point A and Point A-Nasion-Point B angles and the interpremolar apical distance were significantly increased. Conclusions: Within the limitations of this study, the results suggest that the parameters and protocol of LLLT do not clinically affect the efficiency of BBE in prepubertal and pubertal patients.

Load Recovery Using D-Optimal Sensor Placement and Full-Field Expansion Method (D-최적 실험 설계 기반 최적 센서 배치 및 모델 확장 기법을 이용한 하중 추정)

  • Seong-Ju Byun;Seung-Jae Lee;Seung-Hwan Boo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • To detect and prevent structural damage caused by various loads on marine structures and ships, structural health monitoring procedure is essential. Estimating loads acting on the structures which are measured by sensors that are mounted properly are crucial for structural health monitoring. However, attaching an excessive number of sensors to the structure without consideration can be inefficient due to the high costs involved and the potential for inducing structural instability. In this study, we introduce a method to determine the optimal number of sensors and their optimized locations for strain measurement sensors, allowing for accurate load estimation throughout the structure using model expansion method. To estimate the loads exerted on the entire structure with minimal sensors, we construct a strain-load interpolation matrix using the strain mode shapes of the finite element (FE) model and select the optimal sensor locations by applying D-Optimal Design and the row exchange algorithm. Finally, we estimate the loads exerted on the entire structure using the model expansion method. To validate the proposed method, we compare the results obtained by applying the optimal sensor placement and model expansion method to an FE model subjected to arbitrary loads with the loads exerted on the entire FE model, demonstrating efficiency and accuracy.

Turbine Efficiency Analysis of Steady Flow in a Twin Scroll Turbocharger (트윈 스크롤 터보과급기에서 정상유동의 터빈 효율 분석)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.765-770
    • /
    • 2020
  • The turbochargers used widely in diesel and gasoline engines are effective devices to reduce fuel consumption and emissions. In this study, the isentropic turbine efficiency of the steady flow in a twin-scroll turbocharger for the passenger vehicle gasoline engine was analyzed. The cold gas test bench was designed and made. The pressure and temperature of the inlet and exit of the turbine were measured at 60,000, 70,000, 90,000, and 100,000rpm under the steady-state flow. The isentropic turbine efficiency was calculated. The efficiency was the range of 0.53 to 0.57. The BSR and expansion ratio were changed from 0.71 to 0.84 and from 1.24 to 1.72, respectively. The isentropic turbine efficiency decreased with increasing BSR and expansion ratio. The operation of only scroll A or B was compared with that of the twin-scroll turbine. The isentropic efficiency of using only scroll B was higher than those of only scroll A at 60,000rpm. The isentropic efficiency of using only scroll A was higher than those of only scroll B at 100,000rpm. Therefore, the twin-scroll turbine used in this study is operating effectively in the wide speed range.

Container Terminal Efficiency Measurement Using Data Envelopment Analysis: Pre-Pandemic Comparison of Colombo and Busan

  • Naleen De Alwis;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.118-120
    • /
    • 2023
  • Increasing port competition driven by the containerisation has motivated ports and terminals to focus on their performance to efficiently utilise the available resources and to make strategic decisions in port development and expansion. With both inter-port andintra-port competition increasing in the port of Colombo, this study aims to measure the efficiency of the container terminals in Colombo comparing to terminals in the port of Busan using the DEA window analysis to determine their operational efficiency and to provide suggestions for future port development activities. Multiple window analyses were conducted using CCR and BCC models with different orientations and window lengths to compare the efficiencies of 11 DMUs in both ports during the period from 2015-2019 to measure the efficiencies prior to the COVID-19 pandemic. Results revealed the largest terminal operator, PNC in Busan, to be the most efficient overall, while the second highest efficiency was recorded by one of the smallest terminal operators, SAGT in Colombo, among the sample. Although use of DEA in port performance measurement has been popular for many years, efficiency measurements in the port of Colombo, the main hub port in the South Asian region, has not been comprehensively studied so far.

  • PDF

Analysis on Wave Absorbing Performance of a Pile Breakwater (파일 방파제의 소파성능 해석)

  • Cho, Il-Hyoung;Koh, Hyeok-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Based on the eigenfunction expansion method, the wave-absorbing performance of a square or circular pile breakwater was investigated. Flow separation resulting from sudden contraction and expansion is generated and is the main cause of significant energy loss. Therefore, evaluation of an exact energy loss coefficient is critical to enhancing the reliability of the mathematical model. To obtain the energy loss coefficient, 2-dimensional turbulent flow is analyzed using the FLUENT commercial code, and the energy loss coefficient can be obtained from the pressure difference between upstream and downstream. It was found that energy loss coefficient of circular pile is 20% that of a square pile. To validate the fitting equation for the energy loss coefficient, comparison between the analytical results and the experimental results (Kakuno and Liu, 1993) was made for square and circular piles with good agreement. The array of square piles also provides better wave-absorbing efficiency than the circular piles, and the optimal porosity value is near P=0.1.

A Study on the Expansion Cavity Pipe for Performance Improvement of Exhaust System in Automotive (자동차 배기성능개선을 위한 확장형 공동파이프에 관한 연구)

  • Son, Sung-Man;Park, Kyoung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • The temperature of exhaust gas was raised by increasing of engine movement on developing engine. Thermal of high temperature and pressure reverse in bellows, because of increasing of engine movement and the thermal performance of converter in combustion. As a result, thermal loss is increased and thermal efficiency is decreased rapidly in bellows, it can occur to damage in mechanical structure. In this study, it was necessary to analyze back pressure performance and thermal characteristic on driving condition in exhaust system. It was adapted braid type bellows and straight type exhaust pipe. It was compared with curve type exhaust pipe for lay-out on considering to design of exhaust system. It was necessary to improve thermal characteristic and back pressure performance so that expansion cavity pipe(ECP) was installed between bellows and catalyst convert. Not only decreasing back pressure was solved but also thermal characteristic problems in exhaust pipe because of increasing capacity. According to this study, the basis of data is presented when new exhaust system is designed.

Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy (Fe-Ni-Co 합금의 고온 변형 공정 변수와 미세조직 및 열물리적 특성의 상관 관계)

  • Yoon, D.H.;Jung, J.E.;Chang, Y.W.;Lee, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

Policy Formulation of Health Insurance and Its Problems in Korea (의료보장정책의 형성과 문제점)

  • 이규식
    • Health Policy and Management
    • /
    • v.10 no.1
    • /
    • pp.57-94
    • /
    • 2000
  • Korea's social health insurance system was introduced in 1977, which has made a universal coverage possibly by July 1989. Korean government had pursued a single objective for the last decade to put the whole population under the coverage of medical security, and the objective was achieved within 12 years. The rapid accomplishment is primarily due to such factors as limited benefits, high copayment rate, low contributions as well as rapid economic growth. There are several sources of pressure for the implementation of social health insurance such as health professional group, labor unions, politicians, international organizations etc.. However it is important to look at the feasibility of social health insurance. Among other things, it is necessary to identify the administrative infrastructure of insurance system and to assess income for source of fund. As many developed countries, Korea began to apply health insurance to the employees of the large firms, and the expansion based on employment status. Thus the several funds system was inevitable according to the gradual expansion strategy. However many persons had criticized several funds system in respect with equity and efficiency aspects. In the short history of the Korean health insurance, whether one fund or sever or funds had been the most controversial issue. In Febrary 1999, the National Assembly passed the act of one fund system. From July 2000 separate funds will be unifed under new health insurance scheme. In this study we will analyze the policy making process on implementation, expansion and integration of health insurance system of Korea. And also analyse problems related to policy making.

  • PDF

The Realization of High Performance in a Hydrogen-Fueled Engine with External Mixture by Retarding Valve Timing and Super Charging (밸브 타이밍 지각과 과급에 의한 흡기관 분사식 수소기관의 고성능 실현)

  • Lee, Kwang-Ju;Hur, Sang-Hoon;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • In order to analysis the possibility of high expansion and performance without backfire in a hydrogenfueled engine using external mixture injection, combustion characteristics and performance enhancement were analyzed in terms of retarding valve timing and increasing the boosting pressure. As the results, it was found that thermal efficiency increased by retarding intake valve timing with the same level of supplied energy is over 6.6% by the effect of high expansion including effect of combustion enhancement due to supercharging. It was also shown that the achievement of high power (equal to that of a gasoline engine), low brake specific fuel consumption and low emission (NOx of less than 16 ppm) without backfire in a hydrogen-fueled engine is possible around a boosting pressure of 1.5 bar, intake valve opening time of TDC and $\Phi$=0.35 in fuel-air equivalence ratio.