• Title/Summary/Keyword: Expanded uncertainty

Search Result 196, Processing Time 0.046 seconds

Long Term Stability of Uncertainty Analysis of Light Oil Elow Standard System (장기 안정성을 고려한 경질유 유량표준장치 불확도 평가)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1130-1138
    • /
    • 2005
  • A national standard system for the petroleum field has been developed to calibrate and test the oil flow meters in Korea. The operating system and the uncertainty of the system were evaluated by the peer reviewers of foreign national metrology institutes in 2002. Since the characteristics of the system might be changed by time, the uncertainty of the system is reevaluated with the consideration of the long term stability of the system. It is found that the system has a relative expanded uncertainty of 0.048 $\%$ in the range of $15\~120\;m^3/h$. According to the uncertainty budget, the uncertainties of the fluid density and the final mass measurement, which are temperature dependent, contribute about $94\%$ of the total uncertainty in the oil flow standard system

Development and Uncertainty Evaluation of Piston Prover (피스톤 푸루버 개발 및 불확도 평가)

  • Choi, Hae-Man;Park, Kyung-Am
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.47-53
    • /
    • 2003
  • The piston prover was developed and the flow measurement uncertainty of this piston prover was evaluated according to ISO/IEC 17025. The laser interferometer, instead of the optical sensors used in the typical provers, was employed in this prover to measure accurately the testing time and the moved distance of the piston. Uncertainty was calculated with evaluation of various uncertainty factors affecting flow measurement. The expanded uncertainty (U) of the piston prover was $1.3{\times}10^{-3}$ (at the confidence level of $95\%$). This evaluation example will be useful in the flow measurement uncertainty determination of other gas flow measurement system.

Measurement Uncertainty for Analysis of Residual Carbon in a Tungsten-15% Copper MIM part (텅스텐-15% 카파 사출성형체의 잔류 탄소량 분석에 대한 측정 불확도)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.410-414
    • /
    • 2007
  • Carbon contamination from the binder resin is an inherent problem with the metal powder injection molding process. Residual carbon in the W-Cu compacts has a strong impact on the thermal and electric properties. In this study, uncertainty was quantified to evaluate determination of carbon in a W-15%Cu MIM body by the combustition method. For a valid generalization about this evaluation, uncertainty scheme applied even to the repeatability as well as the uncertainty sources of each analyse step and quality appraisal sources. As a result, the concentration of carbon in the W-Cu part were measured as 0.062% with expanded uncertainty of 0.003% at 95% level. This evaluation example may be useful to uncertainty evaluation for other MIM products.

Uncertainty Evaluation of Viscosity Measurement Standards (점도 측정표준 불확도 평가)

  • Choi, H.M.;Yoon, B.R.;Lee, Y.B.;Choi, Y.M.;Lee, S.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.295-301
    • /
    • 2005
  • Viscosity measurement standards were evaluated according to ISO/IEC 17025. The step-up procedure was employed to calibrate a series of capillary type master viscometers. Uncertainty was calculated with evaluation of various uncertainty factors affected in viscosity measurement. The maximum expanded uncertainty(U) of the master viscometer was $3.0{\times}10^{-3}$(at the confidence level of 95 %). This evaluation example will be useful in viscosity measurement uncertainty determination of other standard measurement.

  • PDF

Uncertainty in the Calibration of Coaxal Thermal Noise Sources using a Noise Figure Measuring Equipment

  • Kang, Tae-Weon;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • In this paper, the uncertainty in the calibration of coaxial thermal noise sources using a noise figure measuring (NFM) equipment is evaluated. Contributions to the uncertainty such as the calibration uncertainty of the standard noise source, mismatch, measurement of adapter efficiency, ambient temperature variation, and repeatability are evaluated in the frequency range of 10 MHz to 18 ㎓. Results show that the expanded uncertainty(k=2) is 0.23 ㏈ for the noise sources of 5 ㏈ and 15 ㏈ ENR, and 0.27 ㏈ for those of 21 ㏈.

Uncertainty in Determination of Menthol from Mentholated Cigarette (담배 중 멘톨 분석에 대한 불확도 측정)

  • 장기철;이운철;백순옥;한상빈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • This study was carried out to evaluate the uncertainty in the analysis of menthol content from the mentholated cigarette. Menthol in the sample cigarette was extracted with methanol containing an anethole as an internal standard, and then analyzed by gas chromatography. As the sources of uncertainty associated with the analysis of menthol, were the following points tested, such as the weighing of sample, the preparation of extracting solution, the pipetting of extracting solution into the sample, the preparation of standard solution, the precision of GC injections for standard & sample solution, the GC response factor of standard solution, the reproducibility of menthol analysis, and the determination of water content in tobacco, etc. For calculating the uncertainties, type A of uncertainty was evaluated by the statistical analysis of a series of observation, and type B by the information based on supplier's catalogue and/or certificated of calibration. Sources of uncertainty were subsequently included and mathematically combined with the uncertainty arising from the assessment of accuracy to provide the overall uncertainty. It was shown that the main source of uncertainty came from the errors in the reproducibility of menthol and water determination, the purity of menthol reference material in the preparation of standard solution, and the precision of GC injections for sample solution. The errors in sample weighing and volume measurement contributed relatively little to the overall uncertainty. The expanded uncertainty in the mentholated cigarettes, Korean and American brand, at 0.95 level of statistical confidence was $\pm$0.06 and $\pm$0.07 mg/g for a menthol content of 1.89 and 2.32 mg/g, respectively.

  • PDF

Measurement Uncertainty for Analytical Method of Hyaluronic Acid Used as a Dietary Supplement (식이보충제로 사용되는 히알루론산의 분석법에 대한 불확도 산정)

  • Park, Sang-Wook;Kim, Hyung Bum;Kim, Kwang Joon;Lee, Wonjae
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.54-62
    • /
    • 2017
  • This study aimed to estimate the measurement uncertainty related to determination of hyaluronic acid used as a dietary supplement by high-performance liquid chromatography. According to the guidelines of the Association of Official Analytical Chemists, the analytical processes for determination of hyaluronic acid were performed. And the measurement uncertainty obtained during the analytical processes were expressed in accordance with mathematical/ statistical guidances of GUM (Guide to the Expression of Uncertainty in Measurement) & EURACHEM (Focus for Analytical Chemistry in Europe) for the analytical operations. For the uncertainty in measurement produced based on this analytical method, the expanded uncertainty was calculated by using the relative standard uncertainty between analytical results and sources of uncertainty in measurement (sample weight, final volume, extraction volume, standard solution, matrix and instrument etc). In the results of 95% confidence interval, it was calculated that the uncertainty in measurement was $57.75{\pm}8.76{\mu}g/kg$ (k=2.0). Therefore, it showed that the measurement uncertainty obtained by this analytical method influences on 15.2% of the contents of hyaluronic acid as the analytical results.

Pitch Measurement of One-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation (미터 소급성을 갖는 원자간력 현미경을 이용한 1차원 격자 피치 측정과 불확도 평가)

  • Kim Jong-Ahn;Kim Jae Wan;Park Byong Chon;Eom Tae Bong;Kang Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.84-91
    • /
    • 2005
  • We measured the pitch of one-dimensional (ID) grating specimens using a metrological atomic force microscope (M-AFM). The ID grating specimens a.e often used as a magnification standard in nano-metrology, such as scanning probe microscopy (SPM) and scanning electron microscopy (SEM). Thus, we need to certify the pitch of grating specimens fur the meter-traceability in nano-metrology. To this end, an M-AFM was setup at KRISS. The M-AFM consists of a commercial AFM head module, a two-axis flexure hinge type nanoscanner with built-in capacitive sensors, and a two-axis heterodyne interferometer to establish the meter-traceability directly. Two kinds of ID grating specimens, each with the nominal pitch of 288 nm and 700 nm, were measured. The uncertainty in pitch measurement was evaluated according to Guide to the Expression of Uncertainty in Measurement. The pitch was calculated from 9 line scan profiles obtained at different positions with 100 ㎛ scan range. The expanded uncertainties (k = 2) in pitch measurement were 0.10 nm and 0.30 nm for the specimens with the nominal pitch of 288 nm and 700 nm. The measured pitch values were compared with those obtained using an optical diffractometer, and agreed within the range of the expanded uncertainty of pitch measurement. We also discussed the effect of averaging in the measurement of mean pitch using M-AFM and main components of uncertainty.

Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis (광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석)

  • Kim Jong-Ahn;Kim Jae-Wan;Park Byong-Chon;Kang Chu-Shik;Eom Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

Uncertainty Evaluation of Ammonia Determination in Burley Tobacco (버어리종 담배중 암모니아성 질소에 대한 불확도 측정)

  • Lee Jeong-Min;Lee Kyoung-Ku;Han Sang-Bin
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.107-114
    • /
    • 2005
  • The uncertainty of measurement in quantitative analysis of ammonia by continuous-flow analysis method was evaluated following internationally accepted guidelines. The sources of uncertainty associated with the analysis of ammonia were the weighing of sample, the preparation of extracting solution, the addition of extracting solution into the sample, the reproducibility of analysis and the determination of water content in tobacco, etc. In calculating uncertainties, Type A of uncertainty was evaluated by the statistical analysis of a series of observation, and Type B by the information based on supplier's catalogue and/or certificated of calibration. It was shown that the main source of uncertainty was caused by the volume measurement of 1 mL and 2 mL, the purity of ammonia reference material in the preparation of standard solution, the reproducibility of analysis and the determination of water content of tobacco. The uncertainty in the addition of extraction solution, the sample weighing, the volume measurement of 50 mL and 100 mL, and the calibration curve of standard solution contributed relatively little to the overall uncertainty. The expanded uncertainty of ammonia determination in burley tobacco at $95\%$ level of confidence was $0.00997\%$.